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SUMMARY

This report presents the results of a program directed toward the

development of design data on joints using fatigue-improvement fasteners. The

program objectives were as follows:

Develop statistically confident joint fatigue design data

for three fastener systems (tapered-shank, TaperLok; straight-
shank, HiTigue; straight-shank, mandrelized hole).

Define those fastener or joint variables which affect the
joint fatigue life using the three systems mentioned.

Devise a concise presentation format compatible with MIL-
HDBK-5 philosophy.

Define data requirements (both type and quantity) for possible

future inclusion in MIL-HDBK-5.

The results of this effort can be summarized as follows:

The three fastener systems studied in this program provide
similar low-load transfer joint fatigue properties when
tested in well prepared interference holes. Although trends
were apparent, similar conclusions could not be drawn for
medium- and high-load transfer joints due to reduced data
quantities.

Positive or negative effects upon the nominal conditions
above are observed when: (1) the interference level is
changed, (2) the t/D ratio is reduced, and (3) the joint
material or fastener head configuration is changed.

A stress parameter, (Smax/Ttﬁ), can be used to obtain data
collapse about the stress ratio, R.

The above parameter makes it possible to present an S-N
type curve and confidence bands to statistically depict

a large quantity of data.

Based upon the results of this program, candidate data
requirements have been identified for future programs for

proposed inclusion in MIL-HDBK-5

xii



1. INTRODUCTION

The problem of fatigue of aircraft structures has been present since
the first airplane was flown and has increased in magnitude with every advance
in design technology. Today's level of design sophistication, coupled with
ever increasing weight and cost concerns, has reclassified fatigue considera-
tions from the problem to the design-parameter category.

Prior to the early 1960's, only token consideration was given to
the fatigue life of fastened joints. However, the experience of recent years
has made it apparent that a great majority of aircraft fatigue failures have
occurred at, or passed through, fastener holes. As a result, more and more
emphasis has been placed upon the development of fastened joint fatigue data
for use in specific applications. To accomplish this, numerous simulated
joint configurations and designs have been developed and evaluated for
specific applications.

The increased emphasis on development of fastened joint fatigue
data, coupled with a multitude of joint designs and materials, has brought
about a vast quantity of fatigue data--most of which cannot be compared on a
one-on-one basis. Recently, the Fastener Test Development Group of MIL-STD-
1312 (Fasteners, Test Methods) prepared a proposed test, ''Shear Joint Fatigue-
Constant Amplitude', which defines specific joint configurations, materials,
and test procedures. Implementation of these test requirements will provide
the stepping-off point for the generation of a one-on-one comparable data
base for the fatigue life of fastened joints.

For many years, MIL-HDBK-S(I)(containing fatigue design data for
materials) has been considered the central depository of design data by aero-
space engineers. In keeping with the intent of this document, it is the
desire of the Air Force to include fatigue design data for fastened joints.

If this goal is achieved, the aerospace design engineer will have, for the
first time, comparable joint fatigue design data for several fastener system
concepts. This will further facilitate fastener system selection, as suffi-
cient information will be immediately available to make decisions based on

comparative performance, cost, and producibility.



The research program reported hercin was initiated by the Air Force
to explore the ramifications and variables involved with the development of
design data on joints using fatigue-improvement fasteners. Specifically, the
objectives of the program were to (1) develop statistically comparable joint
fatigue data for three fastener systems, (2) devise a MIL-HDBK-5 compatible
presentation format, and (3) define data requirements (both type and quantity)
for future inclusion in the Handbook. The approach was to develop baseline
S-N type data for what were considered major variables and then test secondary
variables against those baseline conditions to dtermine if there was any
effect. Various data collapse parameters were considered along with data

presentation formats.

Reported herein are the fastener and material selection process,
joint specimen details, and the experimental matrix. The specimen prepara-
tion process is described, as well as methods of data presentation. The
results of the experimental portion of the program, including data analysis are
discussed. Recommendations are made for data presentation format and data
requirements for future programs.

Appendix A contains the fatigue test results; the computer plotted
curves resulting from the analyses are presented in Appendices B and C.
Static joint test results and sheet material properties are documented in
Appendices D and E, respectively. Appendix F contains the bending and load-
transfer analysis of the high-load transfer joint configuration. Appendix G
contains a listing of the computer programs used in the data analysis and

plotting portion of the program.

2. PROGRAM OBJECTIVES

The major objective of the research program reported herein was
the development of fatigue data for fastened joints utilizing fatigue-improve-
ment-type fasteners. As the Air Force desired to include this type of data
in Chapter 8 of MIL-HDBK-5, several secondary objectives were to be attained.
First, a fatigue-data presentation format was to be devised which would pro-
vide airframe designers with a sound criterion for optimum fastener selection

for fatigue-critical joints. Second, the presentation format had to be



compatible with the general philosophy of including only statistically confi-
dent data in MIL-HDBK-5. Finally, a standard data generation program had to
be formulated to permit the inclusion of data for other fastener systems in
MIL-HDBK-5 in the future, The fatigue data generation program had to take
into account variables determined to be critical in this program as well as
allowing enough flexibility so that future fastener designs could be evalu-

ated fairly for comparison with current fastener designs.

3. FASTENER AND JOINT SELECTION

The experimental portion of the program was designed to accomplish a
two-fold purpose: (1) develop an adequate quantity of joint fatigue data to
provide a statistically confident presentation for inclusion in MIL-HDBK-5,
and (2) investigate those fastener, fastener-installation, and joint variables
which might be critical to the data presentation. The details and rationale
concerning the selection of fastener systems and fastened joint specimens for

use in the program are discussed in the following subsections.

3.1. Fastener Selection

Since this program was exploratory in nature, it was critical to
select several fastener systems which were generally accepted and in use be-
cause of their fatigue-improvement qualities. In addition, it was desirable
to investigate systems which had different fatigue-improvement mechanisms or
installation processes. As a result, three fastener categories were selected
for investigation; namely, the tapered-shank interference-fit, the straight-

shank interference-fit, and straight-shank mandrelized-hole concepts.

3.1.1. Tapered Shank, Interference Fit

The TaperLok system was a logical choice for this program as it is
essentially the forerunner of the fatigue-improvement fasteners. It probably
has the largest history of usage and fatigue data accumulation of any of the

fatigue-improvement systems. This system relies upon the fatigue-improvement



mechanism of reducing alternating stress during cyclic loading, which has

(2)

been well documented by Smith and others.

The fastener is manufactured with a %-inch-per-foot taper on the
shank which allows it to be pulled or pushed into a similarly tapered hole.
The hole is drilled and reamed undersize to provide the desired level of
interference between the pin and hole when the fastener is properly installed.
The geometry of the system provides an easy determination of the interference
level as a precision inspection pin or fastener will protrude 0.048 inch prior
to installation for each 0.001 inch of interference after installation. This
system requires careful control of the hole preparation process as the tapered
reamer cuts along the full depth of the hole and chip accumulation or the
wrong selection of feeds, speeds, and lubricants can cause fluted or out-of-
round holes which in turn reduce the effective interference level and, hence,

(3)

reduces fatigue life

3.1.2. Straight Shank, Interference Fit

The second fastener system selected for investigation was the
HiTigue, straight-shank interference-fit fastener. This system has gained a
great deal of attention and primary usage in fatigue-critical aircraft struc-
ture. The system combines two fatigue-improvement principles in its opera-
tion--prestressing and interference fit. 1In addition to a slightly oversize
shank (facilitating the insertion of the fastener into an interference-fit
hole without causing or allowing the threaded area of the pin to come in
contact with the hole which could cause scraping and galling), this fastener
has a slight bead or ball section at the thread-to-shank juncture of the bolt.
It is claimed that this bead accomplishes seven functions: (1) because the
hole diameter is smaller than the shank diameter, it preloads the hole to
provide beneficial residual compressive stress; (2) it cold works the hole;
(3) it burnishes or polishes the hole much like the mandrelizing technique
developed by Speakman(a); (4) the installation process sizes the hole and
essentially eliminates the problem of out-of-round holes and, hence, provides
a constant degree of interference; (5) because the bead is larger than the

shank diameter and leads the shank into the hole, the bead absorbs the major-

ity of the frictional loading and, hence, protects the corrosion-resistant

4



and lubricant coatings deposited on the shank of the pin; (6) because the bead
is small in size and essentially a sphere imposed on a cylindrical shank, its
contact area with any portion of the hole is small, thus reducing installation
loads and the likelihood of galling the hole during installation; and (7) the
combination of cold working of the hole and leaving the hole in an interference-
fit condition provides a fuel-tight sealed joint.

As with the tapered-shank fastener, the precision of the hole prepara-
tion process is a critical factor in controlling the final interference condi-
tion and, therefore, fatigue life. Although some cold working and burnishing
of the hole is accomplished during fastener installation, it is believed that
the interference fit (i.e. reduction of alternating stresses) is the major

mechanism for fatigue-life improvement.

3.1.3. Straight Shank, Mandrelized Hole

The third fastener system involves the combination of a straight-
shank fastener assembled in a cold-worked hole. 1In this case, one of the
benefits considered by several aircraft companies is that no special propri-
etary fastener is necessary. The hole is sized, as described subsequently,
to provide a slight interference to the fastener shank (also subsequently
described). Of the five major methods of mandrelizing, the Boeing-developed
"Sleeve Cold-Expansion'* process method has begun to receive considerable
attention. In this procedure, a thin-wall split sleeve is inserted in the
hole and a mandrel then is pulled through. This technique allows a great
deal of latitude in hole-drilling tolerance and hole-finish conditions because
the split sleeve is interfacing between the actual hole surface and the work-
ing mandrel. The use of the lubricated split sleeve allows the highest degree
of radial cold expansion (0.010 to 0.050 inch, depending upon fastener diame-
ter) attainable without concern for galling or overburnishing. The sleeve
reduces the pulling load on the mandrel while absorbing the longitudinal
frictional forces normally transferred to the hole interface. The high-level

residual-compressive stress has been found to surround the hole to a distance

* Sleeves and tooling were manufactured by Industrial Wire and Metal Forming,
Inc., Tukwila, Washington.



in excess of one radius from the edge of the hole. Once the hole has been
mandrelized, the sleeve is removed and the hole is reamed to the proper size
to suit the selected fastener. The fastener is then installed in a line-to-
line, very slight interference (0.002 inch maximum). The fatigue-improvement
mechanism generated by this fastener system lies in the reduction of the
maximum cyclic stress brought about by the residual compressive stresses

imposed during the cold-working process.

3.1.4. Material Selection

Two parameters were considered when fastener material selections
were made., First, it was considered important to consider two different
strength levels of fasteners, and second, it was believed that elastic modulus
of the fastener might well effect joint fatigue life. As a result, PH13-8Mo
stainless steel and Ti-6A1-4V were selected because of the level of usage and
their differing strength levels (FSu = 125 ksi and 95 ksi, respectively) and
elastic moduli (28.3 x 10°® ksi and 16.0 x 10® ksi, respectively).

Nut and collar material selections were based upon fastener manu-
facturers' recommendations and compatibility with fastener and joint materials.
With the exception of the PH13-8Mo HiTigue fastener, all nuts and collars were
made of A-286 stainless steel. The exception was the HL1399 collar which was

made of alloy steel with a type 302 stainless steel washer.

3.1.5. Fastener Configuration

Two fastener head styles were considered in this program. Major
emphasis was placed on the shear-type countersunk head with secondary
investigation of joints assembled with protruding shear head fasteners.
Manufacturers' basic part designations are shown in Table 1. (The A-286
split sleeve, part number ST5300-CBS-0-N, was used with all straight-shank

fasteners.)

3.1.6. Diameter and Grip

The major portion of the investigation was conducted using 3/8-

inch-diameter fasteners; however, size effects were studied using 3/16- and
6



¥-inch-diameter fasteners. Appropriate grip lengths were selected to allow
assembly of specimens (using standard material gage thicknesses), with thick-

ness-to-diameter ratios (t/D) of approximately 0.5 and 1.5.

TABLE 1, BASIC FASTENER DESIGNATIONS

Fastener Protrud- Flush
System Material ing Head Head Nut
TaperLok Ti-6A1-4V  TLV 200 TLV 100 TLN 1001 A-286 Washer Nut
TaperLok PH13-8Mo TLD 200 TLD 100 TLN 1001 A-286 Washer Nut
HiTigue Ti-6A1-4V  HLT 10 HLT 11 HLT 97 A-286 Frangible
HiTigue PH13-8Mo HLT 34 HLT 35 HL 1399 Alloy Steel Fran-
gible
Straight Shank Ti-6A1-4V  HL 10 HL 11 HL 97 A-286 Frangible

Straight Shank  PH13-8Mo HL 644 HL 645 HL 97 A-286 Frangible

3.1.7. Finish and Lubrication

Fastener platings and lubricants were selected, as recommended by
the fastener manufacturers, to be compatible with the joint materials being
tested and to ensure proper fastener operation. The fastener finishes and

lubricants for each of the fastener materials are shown in Table 2.

TABLE 2. FASTENER FINISH AND LUBRICATION

Fastener Pin Finish/Lubrication Nut or Collar Finish/Lubrication

PH13-8Mo Pins

TaperLok Passivate/Lubeco #2123 Passivate/Cetyl Alcohol

HiTigue Hi-Kote 2/Cetyl Alcohol  Nut-Cadmium Plate/Cetyl Alcohol
Washer-Solid Film Lube per MIL-
L-8937

Straight Shank Hi-Kote 2/Cetyl Alcohol  Lubeco #2123

6A1-4V Pins

TaperLok Lubeco #2123 Passivate/Cetyl Alcohol

HiTigue Hi-Kote 2/Cetyl Alcohol Silver Plate/Cetyl Alcohol

Straight Shank  Lubeco #2123 Silver Plate/Cetvl Alcohol




3.1.8. Installation Methods

All fastener installations were accomplished to the nominal inter-
ference or cold work values recommended by the manufacturer, except when
installation effects were studied. 1In that case, fasteners were installed
in minimum and maximum levels to generate data on the effects of hole drill-
ing tolerance and interference or cold work levels on fatigue life.

The TaperLok fasteners were installed in accordance with Briles
Installation Specification BPS No. 148; the HiTigue fasteners were installed
in accordance with Hi-Shear Specification No. 299. These specifications
define drills and drilling procedures, hole tolerances, and gaging. They also
specify inspection methods, interference limits, and installation procedures.

Process Instructions IWMF-1-75 obtained from Industrial Wire and

(5)

Metal Forming, Inc., and the work reported by the Boeing Company were used
to define the installation procedures for the mandrelizing process. Fastener
interference and cold work levels are shown in Table 3 with installation
torque levels shown in Table 4.

Some hold drilling and fastener installations were completed by
Omark Industries and HiShear Corporation in order to assess laboratory-to-

laboratory variations in the specimen preparation process. (Industrial Wire

and Metal Forming, Inc., did not participate in this portion of the program.)

TABLE 3. FASTENER INTERFERENCE AND COLD WORK LEVELS

Diameter, Level,

Fastener inch inch Range, inch
TaperLok® 3/16 0.0025  0.0015 - 0.0036
TaperLok® 3/8 0.0040  0.0024 - 0.0054
TaperLok® 1/2 0.0048  0.0030 - 0.0066
HiTigue® All 0.0045  0.0030 - 0.0060

. 3/16 0.0115  0.0105 - 0.0125
Mandrelize 3/8 0.0175  0.0160 - 0.0190
1/2 0.0210 0.0195 - 0.0225

Straight Shank® All 0.0020  0.0015 - 0.0025

Interference-fit fastener.
Cold work level using Boeing Split Sleeve/Mandrel system.

Interference-fit fastener after cold work expansion of holes.
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TABLE 4, INSTALLATION TORQUEa

Bolt Material

PH13-8Mo Ti-6A1-4V
Diameter, HLT and
inch Grip TLN 1000 HL 1399 HL 97 TLN 1000 HL 97
3/16 0.500 45 £ 10 42 & 75 30 £ 5 40 + 10 30 £ 5
3/8 0.380 180 + 15 235 &+ 25 220 % 20 170+ 15 220 £ 20
3/8 1250 320 £ 15 235 & 25 220 £ 25 | 220 £ 20 220 £ 20
1/2 1.500 650 +£ 30 450 + 25 400 + 30 625 + 15 400 + 30

@ All torque values are in inch-1bs.

3.2, Fastened Joint Specimens

The selection of the joint configuration for evaluation of fastener
fatigue life has historically been left to the discretion of the airframe
designers. Usually, each interested party or organization would select or
design a fatigue test specimen which they believed most closely matched their
structural application. This led to a multiplicity of specimen configura-
tions, which was in excess of 30 configurations in the simpler forms by the
late 1960's. It was obvious that with the large number of specimens in use,
there was no possibility of gathering any quantity of comparable data on any
one type of fastener. Hence, the DoD-sponsored Fastener Test Development
Group undertook a project to study and specify configurations and test condi-
tions for joint lap-shear-fatigue testing. Combined military-industry
consideration of the problem indicated that some comparative testing of these
various joints would have to be conducted in order to determine which of the
joints were sensitive to the influences of installed fasteners. Urzi(6’7)
undertook projects under Navy and Air Force sponsorship to survey the industry,
determine the types and configurations of joints in use, and evaluate those

joints. He was able to separate the joint configurations into four basic

types--no-load, low-load, medium-load, and high-load transfer. Comparative
testing indicated that one configuration of each of the type of joints noted

above was sensitive to the fatigue resistance of the fastener installed in it.



3.2.1. Configuration Selection

The specimen configurations used in this program are shown in
Figures 1 through 4. These configurations, with the exception of Figure 3,
are essentially those proposed by Urzi for inclusion in Test 21 of MIL-STD
1312. The specimen shown in Figure 1 was used to develop smooth specimen and
open hole (Kp ~ 3.1) material fatigue data. The majority of the investiga-
tive effort revolved around the reverse dogbone (low-load-transfer) joint
with some testing conducted on the simple-lap (100 percent load-transfer)
joint and the modified 1% dogbone (medium-load-transfer) joint. Sheet thick-
nesses were selected to provide a thickness-to-diameter ratio (t/D) ranging

between approximately 0.5 and 1.5.

3.2.2. Joint Material Selection

The selection of Ti-6A1-4V in the mill-annealed condition was fairly
obvious based on the quantity used in industry. The next logical choice was
an aluminum alloy; however, the selection of a particular alloy posed a prob-
lem. Aluminum 2024-T81 and -T851 are presently being given a fair amount of
usage by industry; however, there is very little data published concerning
fatigue properties. 1In addition, the 2000-series aluminum alloys are somewhat
harder to machine and there was considerable concern that their '"gummyness"
might introduce extra hole drilling problems in the form of oval, out=-of-
round, and wormy holes.

As a result, the 7000-series alloys were considered and, after
discussions with the project monitor, the 7075 alloy in the T73 and T7351
tempers was selected. These tempers have the lowest strength of the 7075
tempers, but have the highest toughness and lowest susceptibility to stress-
corrosion cracking. In addition, they have very good machining properties,
making consistent high quality hole preparation a possibility. Nonetheless,
this material is more notch sensitive than 2024 and care must be exercised
during specimen preparation to avoid nicks and gouges, especially on the fay

surfaces, which can act as crack-initiation points.
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4, EXPERIMENTAL PROGRAM

As stated earlier, the objective of the program was to explore the
development of design data for joints using fatigue-improvement fasteners and
to provide initial definition of test data requirements and presentation for-
mat. Because of the size of the task, it was necessary to design a test
matrix which would provide as much usable data as possible without overlook-
ing the effects of any important variables which might provide unconservative
data when other fatigue-improvement fasteners were investigated. Several
approaches were carefully considered in arriving at a test matrix that would
achieve the objectives of this program. Because of the extensive number of
specimens required for a completely factored, statistically designed experi-
ment (involving 8 to 20 specimens for each variable), a modified statistical
approach was taken. In the test matrix described subsequently, emphasis was
placed on areas of prime concern--with limited examinations of secondary
variables such that statistical analysis of the data would indicate the
effects, positive or negative, of the variables relative to the fatigue
behavior of a baseline condition. Prior to defining the actual test matrix,
it was necessary to define some of the baseline conditions such as stress
ratio; primary joint configuration, t/D ratio, and material; and primary bolt

diameter, material, and head style.

4.1. Stress Ratio, R

Many of the presently available data have been generated at a stress
minimum cyclic stress

ratio (ﬁ = f um ey 1_ 5 of 0.1
maximum cyclic stress~

selecting this R value cannot be traced--even after considerable discussion

Although the exact reason for

with many airframe and fastener people--it may be that early fatigue machines
operated best at R = 0.1.

From a practical application approach, it is not uncommon to see
flight spectra loadings that include ground-air-ground cycles of R = - 0.4
or less, and gust loads of R = + 0.4 or greater. From these two considera-
tions, R = + 0.25 and R = - 0.25 were selected for use in this program.
Further justification of this selection can be made by examining the relation-

ship of R values in the constant-life diagram.
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At a given number of cycles to failure, each pair of R values will
describe two points that can reasonably be connected by a straight line and,
if sufficient data are available, some confidence bands. Comparison of
Figure 5(a) and (b) shows that wider coverage and better interpolation and
extrapolation can be obtained with the R = 0.25 and - 0.25 values with
reasonable accuracy over the range of * 0.45. 1In addition, if a parameter
could be found to provide data collapse around the stress ratio, its effec-

tiveness or accuracy could be better tested with the broader range of R =
+ 10525,

4.2, Primary Joint Configuration

The primary joint configuration was selected as the aluminum low-
load transfer specimen. A primary t/D ratio of 1.5 was selected in an effort

to find the greatest fastener system differences in thick stackups.

4.3. Primary Fastener Configuration

The 3/8-inch-diameter fastener was selected for baseline data
generation as it is the middle of the extremes considered in this program.
The flush-head configuration was used in order to produce the most conserva-

tive fatigue data; the PH13-8Mo material was selected because of the lower

cost compared to titanium fasteners.

4.4, Summary of Variables

The primary variables detailed above are summarized as follows:

® 2 joint configurations e 1 bolt head style
® 2 joint materials e 1 t/D ratio
® 1 bolt diameter ® 2 stress ratios.

® 1 bolt material

The secondary variables (in the numbers indicated in parentheses)
that were examined are as follows:

® Additional joint configuration (1)
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e Additional bolt diameters (2)
e Additional bolt material (1)

® Additional bolt head style (1)
e Additional t/D ratio (1)

e Additional stress ratios (2)

® Variations in installation condition (minimum and maximum).

4,5, Statistical Treatment of Data

As discussed earlier, statistical confidence in data intended for
inclusion in MIL-HDBK-5 was one of the major objectives. This program was
designed to provide the broadest possible coverage of the fastened-joint
fatigue problem. The general approach was to define primary and secondary
variables and give them separate statistical consideration. The primary
variables were allotted more test specimens, thus making it possible to
generate statistically confident fatigue curves. These curves were then used
as baselines and secondary variables were tested to determine if a statisti-
cally measurable effect was present. Tests on the secondary variables were
not intended to give an absolute measure of magnitude but only to establish
if an effect is present. The general approach is discussed in the following

paragraphs.

4.5.1. Fatigue Curves

After the important factors influencing fatigue life of a particular
fastener/joint combination had been identified, a baseline set of data was
generated for that combination. These data were used to define an S-N curve
to which further comparison could be made. For each S-N curve, the stress
levels and number of repetitions of these stress levels were selected to
obtain maximum confidence on the mean curve while attempting to minimize the
variance at all levels.

In fatigue testing, the optimum allocatinn of selected stress levels
is highly dependent on the expected shape of the ;-N curve, while the appro-

priate number of test repetitions at a given stress level is related to the
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magnitude of variance in log fatigue life for the fatigue life interval of
interest. In effect, this means, generally, that it may be useful to test
some additional specimens in sections of the curve (at longer lives) where
data variation is likely to be greatest.

After the test matrix for a given S-N curve had been defined and
completed, an optimal regression curve was constructed. In the simplest case,
fatigue life was considered only a function of some stress parameter and all
other variables were held constant. This was based on an expression of the

general form

logio N = A + A, S + Ay logyo (1)
where Ne = fatigue life in cycles (the dependent variable)
S = a stress parameter (the independent variable)

(Smax’ Salt, etc.)

A, Ay, A; = regression coefficients.

(8)

BCL computer programs facilitate the regression optimization of Equation
(1). A quantitative estimate of goodness-of-fit was provided by way of the
calculated statistical parameter, r®, defined as the sum of squares of devia-
tions of the dependent variable (in this case, log,o N¢) from its mean

associated with regression. Values of r®

approaching 100 percent were most
desirable, since that implied a large percentage of the variance of the
dependent variable was attributable to the regression and that a good correla-
tion between the dependent and independent variables had been established.

If fatigue life was truly a random variable, confidence limits could
be established on the mean curve [Equation (1)] for any given stress level by

use of the following expression:

log,o Ng¢ = logyo Np + k(s.d.) , (2)

where log,, Ng = mean fatigue life calculated from Equation (1)
k = factor that depends on the sample size, n; the desired
proportion of the population distribution; and the

confidence at which this interval was estimated (9)

s.d, = logarithmic sample standard deviation (sample error of
estimate of fatigue life values).
The calculation of confidence limits using Equation (2) required the assump-

tion that the data were independent and log-normally distributed, with zero
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(8)

mean deviations and constant variance . Of these considerations, the
uniformity of variance was of greatest concern as fatigue data generally tends
to show increasing variance with increasing life. However, it was believed
that the selection of a 90 percent confidence level and a 90 percent popula-
tion distribution would provide a reasonable variance range at long lives and
a conservative range at short lives. It was also believed that inspection of
the r° statistic and standard deviation for each regression-optimized data

set would provide adequate insight concerning log-normal distribution and zero

mean deviations.

4,5.2. Secondary Variable Tests

After a baseline or mean curve with 90 percent confidence bands
(see Figure 6) had been generated, a variable was then examined to determine
if it had an effect on fatigue life, as discussed in the following paragraphs.

If the chances of the data falling to the left of the mean curve
were 50-50, or %, then the probability of N test values falling to the left
of the mean curve was (%)N. If five specimens were tested and they all fell
to the left of the mean curve, then the probability of there being an effect
(i.e., different from mean curve behavior) was (%)® or 1/32. Ninety-five
percent confidence is 5 chances in 100 or 5/100 or 1/20. If the data showed
ore chance in 32 of error and 95 percent confidence was one chance in 20, it
can be said with greater than 95 percent confidence that the variable reduced
fatigue life.

The same argument can be applied to a seven-specimen test lot. In
this case, the probability of there being an effect is ()7 (= 1/128) or one
chance in 128. Ninety-nine percent confidence is one chance in 100 or 1/100.
Hence, if all seven data points were to fall to the left of the mean curve,
it could be said with 99 percent confidence that the variable reduced fatigue
life. A similar argument can be made for four specimens and 90 percent
confidence.

The converse argument (i.e., data to the right of the mean curve)
can be used to show that a variable increased fatigue life.

A somewhat different argument can be applied for sample sizes of

less than five or data falling outside of a confidence band. 1In this case,
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a well-defined baseline mean curve with a 90 percent confidence band is neces-
sary. Here, we rely on the confidence band and say 'we have 90 percent confi-
dence that 90 percent of the data for this condition fall within the band".
Thus, if we tested a small sample size (say four) and the data fell outside
the band, we could be 90 percent confident that the data did not belong to

the same family as that of the mean curve.

If the data from a secondary variable test should fall on both sides
of the mean curve, one might conclude that the data could be combined with the
mean curve data. In that case, the data can be tested statistically to deter-
mine if it belongs in the data family of the mean curve.

With this statistical basis, the test matrix described in the follow-

ing paragraphs was determined.

4,6, Test Matrix

The first step in the program was confirmation of joint material
properties as compared to existing data. Because data were available, a
center point stress ratio of zero (R = 0) was used and R = + 0.25 curves could
be plotted from existing data with a correction factor added, if required.

The specimens allocated for this portion of the program are shown in Table 5.
Half of the specimens were smooth sheet and the other half had a center hole

drilled to provide open-hole data (see Figure 1).

TABLE 5. SPECIMENS FOR DETERMINATION OF JOINT MATERIAL FATIGUE PROPERTIES®

Test Number of Thickness, Nominal

Series Specimens Material inch Diameter Load Notes
54 2 Al +250 3/16" ULT Static
54 10 Al «250 371" S-N
55 2 Al .190 3/8" ULT Static
55 10 Al 190 3/8" S-N
56 2 Al «625 3/8" ULT Static
56 10 Al 4625 3/8" S-N
57 2 = ¢ #2230 3/8" ULT Static
57 10 Tl .250 3/8" S-N
58 2 Ti «625 3/8" ULT Static
58 10 Ti «625 3/8" S-N

& To be repeated with specimens with center hole drilled to nominal diameter
shown above.
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The second step was to conduct static and fatigue tests on the
fastened joints shown in Table 6. This matrix was completed for each fastener
type. Even though all fastener types were tested simultaneously to eliminate
test machine and time-dependent errors, a description of the function of the
matrix as conducted for any one fastener follows.

Test 1 provided ultimate tensile and yield strength data for that
joint configuration. This test was conducted on all fastener and joint
combinations included in this program.

Test 2 developed the fatigue curve for the same configuration with
the load level related to ultimate tensile strength (UTS), if necessary. The
fatigue curve was developed using a limited number of specimens; five or six
specimens were tested at progressively lower load levels to determine the shape
of the curve. Once the shape was established, loads of particular interest
were selected and the individual tests replicated. After the test data were
obtained, the statistical curve was determined for use as a baseline.

Test 3 examined the effect of minimum and maximum installation
procedures. As discussed earlier, statistical tests conducted during the
test sequence made it possible to conclude this test before all of the speci-
mens were subjected to fatigue cycling. In some cases where the statistics
indicated that an effect was present, it was desirable to continue the test
80 as to generate as much data as possible to evaluate the magnitude of the
effect.

Test 4 was a repeat of Test 2 at the negative stress ratio. In this
case, if Test 2 had defined the shape of the curve, fewer specimens were deemed
necessary,

Test 5 considered a change in sheet thickness. These data were
compared to the curve generated in Tests 2 and 4 to determine t/D effect.

Tests 6 and 7 considered different bolt diameters. The data were

compared to the results of Tests 2 and 4.

Tests 8, 9, and 10 were identical to Tests 1, 2, and 3 with the

exception that joint configuration was changed. A direct test for effect
was made between the two series.

Tests 11 and 12 dealt with the change in bolt diameter and were

treated in the same manner as Tests 6 and 7.
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(a)

TABLE 6. JOINT TEST PROGRAM FOR ONE FASTENER SYSTEM
Joint
Test Number of Figure Bolt Bolt(b)
Series Specimens Number Material t/D Diam Material Load R Notes
1 2 2 Al L+ 3/8 A ULT -- Static
2 15 2 Al 15 3/8 S-N +.25
3 12 2 Al 1.5 3/8 A A-C 4+.25 Minimum and maximum installations, 6 each -
4 12 2 Al 155 3/8 A S-N -.25
5 4 2 Al .5 3/8 A A-B-C  +.25 6 at each R - 2 at each load + 2 static
6 8 2 Al 1.5 3/16 A A-C +.25 3 at each of 2 loads + 2 static
7 8 2 Al 1.5 1/2 A A-C +.25 3 at each of 2 loads + 2 static
8 2 + Al 15 3/8 A ULT --
9 15 4 Al 15 3/8 A S-N +.25
10 12 4 Al 1.5 3/8 A S-N -.25
11 8 4 Al L.5 3/¥6 A A-C +.25 3 at each of 2 loads + 2 static
12 8 4 Al 1.5 1/2 A A-C +.25 3 at each of 2 loads + 2 static
13 2 4 Al o9 3/8 A ULT == Static
14 12 4 Al .5 3/8 A A-C +.25 3 at each of 2 loads - both R's
15 2 3 Al 1.5 3/8 A ULT -= Static
164 6 3 Al 1.5 3/8 A A-B-C  +.25
174 6 3 Al 1.5 3/8 A A-B-C  -.25
189
194
20(d)
21 2 2 Al 1.5 3/8 B uLT  --  Static
22 12 2 Al 1.5 3/8 B S-N +.25
23 9 2 Al 1.5 3/8 B S-N -.25
24 2 2 Al .5 3/8 B ULT -- Static
25 12 2 Al 5 3/8 B A-B-C  +.25 2 each at 3 loads - both R's
26 4 Al L.5 3/8 B ULT == Static
27 12 4 Al 1.5 3/8 B A-B-C  +.25 2 each at 3 loads - both R's
28 2 4 Al .5 3/8 B ULT == Static
29 8 4 Al .5 3/8 B A-C +.25 2 each at 2 loads - both R's
30 2 2 Ti 1.5 3/8 A ULT == Static
31 10 2 Ti 1.5 3/8 A S-N +.25
32 4 2 Tf 15 3/8 A A-C -.25 2 each at 2 loads
33 8 2 Ti 1.5 3/8 A A-C +.25 2 each at 2 loads, minimum and maximum conditions
34 2 2 11 5 38 A ULT -- Static
35 6 2 Ti - 3/8 A A-B-C +.25 2 each at 3 loads
36 2 4 bt 8 158 3/8 A ULT -- Static
37 6 4 Ti 1.5 3/8 A A-B-C  +.25 2 each at 3 loads
38 2 4 It 5 3/8 A ULT -- Static
39 6 4 T 5 3/8 A A-B-C  +.25 2 each at 3 loads
40 2 2 T 15 3/8 B ULT == Static
41 8 2 Ti 1.5 3/8 B A-B-C  +.25 2 each at 2 loads - both R's
42 2 2 s 15 s a®)  ur - static
43 12 2 Al 1.5 3/8 A(e) A-B-C  +.25 2 each at 3 loads - both R's
44 2 2 Al 50 B e ULT  --  Static
45 12 2 al 5 3/8 A® A-Bc  +.25 2 each at 3 loads - both R's
46 2 4 Al Ls am A LT --  Static
47 12 4 Al 1.5 3/8 A®)  A-B-c  +.25 2 each at 3 loads - both R's
As(f) 4 2 Al L5 3/8 A A-C 0} 2 each at 2 loads
49(5) 4 2 Al 1.5 3/8 A A-C  -1.0 2 each at 2 loads
50(f) 4 4 Al 1.5 3/8 A A-C #.1 2 each at 2 loads
5105 4 4 Al 1.5 3/8 A A-C -1.0 2 each at 2 loads
52(%) 4 2 T 1.5 3/8  a®) A #.1 2 each at 2 loads
53() 4 4 i 1.5 3/8 A% Ac 1.0 2 each at 2 loads
(a) To be repeated for all 3 fastening methods. o

(b)
(c)
(d)
(e)
(f)
(8)

Bolt material A is PH 13-8 Mo — Flush Head; bolt material B is 6A1-4V — Flush Head.
Revised per agreement with technical monitor on June T 197835

Deleted per agreement with technical monitor on June 7, 1973.

Bolt material A is PH 13-8 Mo — Protruding Head.

Added per agreement with technical monitor on June 7, 1973.

To be used for Boeing Mandrelized Hole concept only.
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Tests 13 and 14 evaluated the effect of change of t/D ratio in the

second joint configuration.

Tests 15, 16, and 17 evaluated the third joint configuration in

much the same way as the first two configurations. The bolt diameter was held
constant throughout.
Tests 21 through 29 evaluated the titanium bolt material in two

joint configurations.,

Tests 30 through 39 considered the PH13-8Mo bolt in two joint

configurations fabricated from titanium material.

Tests 40 and 41 dealt with the titanium bolt in titanium material.

Tests 42 through 47 provided insights concerning the effect of

protruding head bolts on joint life. The data were compared directly to the
results of Tests 1 through 14.

Tests 48 through 53 provided additional comparative data at addition-

al stress ratios in order to test further for any data collapse parameter.

It was possible (as discussed previously) to make statistically
confident decisions concerning the effect of a variable relative to a baseline
condition. Proper control of the test sequence allowed these tests to be made
while the program was in progress. In some cases, it was possible to conclude
that a particular variable definitely did or did not have an effect before

all of the allotted specimens for that particular tests had been used.

4.7. Test Equipment and Environment

All fatigue experiments were conducted using one of four closed-loop
electrohydraulic test systems, as appropriate. The systems are capable of
applying maximum dynamic loads of + 500,000, + 130,000, + 50,000, and + 20,000
pounds, respectively. The systems were selected on the basis of load and
compliance requirements of individual specimens to provide the most efficient
system utilization. Cyclic loading frequencies varied from 3 to 25 Hz
dependent upon specimen load and stroke requirements. All tests were conducted

in an air-conditioned, humidity-controlled laboratory.
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5. SPECIMEN PREPARATION

5.1. Specimen Blanks

Specimen blanks shown in Figures 1 through 4 were subcontracted to
the Dyna-Quip Corporation, Columbus, Ohio. The aluminum material was ordered
and delivered with adhesive-backed paper applied to both sheet surfaces. The
protective paper was kept on the material during specimen blanking and hole
drilling to minimize surface scratching and denting. As noted earlier, some
of the blanks were sent to Omark Industries and the HiShear Corporation for

hole drilling and fastener installation.

5.2, Fay Surface Treatment

Fay surface treatments were in accordance with proposed MIL-STD-
1312 Test 21. High-load-transfer joints were degreased prior to assembly.
Aluminum low-load and medium-load transfer specimens were degreased and coated
with zinc chromate primer (per TT-P-1757) applied in accordance with MIL-P-
6808. Titanium low-load-transfer specimens were coated with Molykote 106 and
then cured for 60 minutes at 300 F. Study of AFML-TR-71-184 entitled '"Fretting
Resistant Coatings for Titanium Alloys' indicated that, other than degreasing,

no preliminary surface treatment was required.

5.3. Hole Preparation

As noted earlier, all fastener holes were prepared in accordance
with the manufacturers' recommended instructions. All holes were inspected
to ensure that diameter, roundness, rifling, and tool marks were within
acceptable limits. In addition, a statistical analysis was conducted on hole
sizes to ensure proper interference levels. This was accomplished by computing
a mean and standard deviation for each family of hole diameters. A range was
then computed that encompassed 99.97 percent of the values (mean t+ 3 standard

deviations) and was compared to the minimum and maximum measured values.

26



5.3.1. Tapered Holes

Tapered holes were prepared using combination drill reamers obtained
from Omark Industries. All holes were predrilled 1/64-inch undersize and then
taper reamed. A master tapered pin with Prussian blue paint pigment applied
was pressed into the hole with finger pressure and the protrusion was measured
to determine the interference level as outlined earlier. The pin was then
tapped into the hole approximately 25 percent of the protrusion value and
removed. The pattern generated on the pin was checked visually to ensure a
minimum of 80 percent bearing on all sheets. The protrusion value and percent
bearing was recorded for each hole. A summary of computed interference values

is presented in Table 7.

TABLE 7. TAPERLOK INTERFERENCE VALUES

Nominal Mean Inter- Standard _ Range, Minimum/Maximum
Diameter, ference, Deviation, X £ 3 s;di, Measured,
inch inch (s.d.), inch inch inch
3/16 0.00253 0.00054 0.00199/0.00307 0.00204/0.00310
3/8 0.00418 0.00032 0.00321/0.00515 0.00311/0.00485
1/2 0.00556 0.000686 0.00350/0.00762 0.00531/0.00596

5.3.2 HiTigue Holes

Holes for HiTigue fasteners were prepared by predrilling 1/64-inch
undersize and then reaming to the final diameter. All holes were checked
visually to ensure good quality and all hole diameters were measured. A sum-

mary of hole sizes and computed interferences is presented in Tables 8 and 9.

TABLE 8, HITIGUE HOLE SIZES

Nominal Mean Inter- Standard _ Range, Maximum/Minimum
Diameter, ference, Deviation, X &3 s.di, Measured,
inch inch (s.d.), inch inch inch
3/16 0.19074 0.000395 0.18955/0.19192 0.1901/0.1912
3/8 0.37517 0.000555 0.37462/0.37573 0.3747/0.3757
1/2 0.50054 0.000162 0.50006/0.50103 0/5002/0.5008
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TABLE 9. HITIGUE INTERFERENCE VALUES

Nominal Nominal Mean Hole Mean
Diameter, Shank Diameter, Diameter, Interference,
inch inch inch inch
3/16 0.1950 0.1907 0.0043
3/8 0.3800 0.3752 0.0048
1/2 0.5050 0.5005 0.0045

5.3.3. Mandrelized Holes

Holes for the mandrelizing process were drilled 1/64-inch undersize,
reamed to final size, and measured. The holes were cold worked and then final
reamed (approximately 0.007 inch material removed) to final size for fastener
installation. A summary of cold working diameters and interference along with

hole sizes and computed interferences is presented in Tables 10 through 13.

TABLE 10. MANDRELIZED COLD WORK LEVELS

Nominal Nominal Sleeve Wall Mandrel
Diameter, Hole Diameter, Thickness, Diameter, Cold Work Level,
inch inch inch inch inch
3/16 0.178 0.008 0.174 0012
3/8 0.356 0.010 0.354 0.018
1/2 0.4725 0.012 0.4695 0.021

TABLE 11. MANDRELIZED HOLE SIZES BEFORE COLD WORKING

Nominal Mean Standard Range, Minimum/Maximum
Diameter, Diameter, Deviation, X +3 8.d . Measured,
inch inch (8.d.); inch inch inch
3/16 0.17822 0.00021 0.17759/0.17885 0.1776/0.1787
3/8 03557 0.00028 0.35486/0.35654 0.3550/0.3563
1/2 0.4724 0.00026 0.47162/0.47318 0.4715/0.4731
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TABLE 12. MANDRELIZED HOLE SIZES AFTER COLD WORKING AND REAMING

Nominal Mean Standard _ Range, Minimum/Maximum
Diameter, Diameter, Deviation, X & 3 s.d); Measured,
inch inch (s.d.), inch inch inch
3/16 0.1871 0.000224 0.18643/0.18777 0.1866/0.1877
3/8 0.372256 0.000177 0.37172/0.37279 0.3720/0.3727
1/2 0.49644 0.000167 0.4959/0.4969 0.4962/0.4967

TABLE 13. FINAL FASTENER INTERFERENCE LEVELS FOR MANDRELIZED HOLES

Nominal Nominal Mean Hole Mean
Diameter, Shank Diameter, Diameter, Interference,
inch inch inch inch
3/16 0.1890 0.1871 0.0019
3/8 0.3740 0.3723 0.0017
1/2 0.4990 0.4964 0.0026

5.4. Specimen Supports

Antibuckling restraint similar to that shown in Figure 7 was pro-
vided for all specimens loaded at negative R ratios.

Initially, all high-load-transfer joints were provided with the
sandwich-type bending restraint as defined in proposed Test 21 of MIL-STD-
1312 and shown in Figure 7. However, study of the specimen while under load
revealed extensive bending of the specimen outside of the restraint area was
being transferred to the actuator of the test system. A secondary restraint
system was devised which consisted of a pair of rollers contacting each of
the restraint surfaces in an effort to reduce lateral motion of the restraint.
In an effort to ensure that the secondary system did not impose any load
transfer across the restraint, a specimen was strain gaged and load-strain
data were obtained with the specimen restraint in place and with the specimen
restraint and rollers in place. Analysis of that data indicated that load was

being transferred across the restraint in both cases. Additional analysis led
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to the conclusion that thick joints (t/D = 0.5) could not be adequately re-
strained from bending without transferring some of the applied load across the
restraint system. Hence, it is difficult to assess fastener effects when
either the degree of joint bending is not known or the actual applied load

in the joint area is unknown. (Details of the above-noted analysis are pre-
sented in Appendix F.) As a result, it was determined that the data being
obtained for the high-load-transfer joint configuration were of little value
in defining critical design data parameters and, hence, investigation of that

joint configuration was stopped.

5.5. Specimen Zdentification

A specimen identification code was devised which made it possible to
code the machined blanks and keep a data log of all operations on the specimen

thereafter. The code is explained as follows:

Identification Code

X X X X X X X

Fastener

Straight-Shank Interference
Tapered-Shank Interference
Straight-Shank Mandrelized Hole
None

Bolt Material

PH13-8Mo
Titanium

Z2XH0n X

Bolt Head Type

Flush Head
Protruding Head

g T e

Bolt Diameter (in 1/16's) None
0.190
0.375
0.500

0O W O -

Joint Configuration

Sheet Strength
Low-Load Transfer
Modified 1% Dogbone
High-Load-Transfer

Joint Material

Clad 7075-T73 Aluminum
6A1-4V Titanium

Test Series 1-

R U ) e

H P iff—

Specimen Number

O
—
]
O
O
3 —ai——

Prepared by a Second Source
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For example, SDF6DT31-7 describes a specimen where a straight-shank
interference, PH13-8Mo flush-head, 3/8-inch-diameter fastener is installed
in a low-load-transfer joint made of Ti-6Al-4V. The specimen would be used
for the seventh experiment of Test Series No. 31. An additional example
might be NOSA59-4 which describes a nonfastened specimen in the no-load-
transfer configuration made of aluminum, intended for the fourth experiment

of Test Series No. 59.

6. METHODS OF DATA PRESENTATION

During the course of this program, constant consideration was given
to the problem of data presentation format. Two major needs were identified:
(1) a format which would facilitate data analysis and determination of critical
variables and (2) a format which would be easily understood when included in
MIL-HDBK-5. As it turned out, the solutions of the two problems went hand-in-
hand.

6.1. Data Analysis Format

It was apparent from the onset of the data generation portion of the
program that maximum data utilization could be accomplished only if some method
could be found to negate or predict the effects of the stress ratio, R. If
these effects could be negated or caused to collapse via the use of some
parameter, then it was believed that data could be grouped to provide a
broader and more statistically confident data base. Consideration of the
fatigue improvement mechanisms of fastener systems indicated that maximum
stress (for cold working) and alternating stresses (for interference-fit)
should be included along with stress ratio if the parameter was to apply to
the fastener systems used in this program. A combination of maximum and alter-

nating stresses yielded the following parameter:

VSmax Salt ksi = vSpax C T

_uin (3)

]
wn
—
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where S .. the stress having the highest algebraic value in the stress cycle
Sa1t = the alternating stress or stress range = §

S

max Smin

i = the stress having the lowest algebraic value in the cycle

R = the ratio of minimum stress to maximum stress.

(10), and Walker(ll)

This parameter is not new as Smith, et al
developed forms for elastic and post-yield conditions and Rice, et a1(8) demon=-
strated that both forms achieve a high degree of correlation. It should be
kept in mind that the form (Eq. 3) discussed and used herein is primarily

ax’/ " B

parameter provided very promising results and so attention was next given to

limited to elastic conditions. Plots of initial data using the Sm

curve fitting models.

6.2. Curve-Fitting Models

Several curve-fitting models were considered as it was believed that
data analysis could most easily be completed using S-N type curves. The models
considered included polynomial, tangent, power, and logarithmic functions.

The polynomial and tangent functions showed some initial promise; however,
each model required weighted curve-fitting constants at both short and long
life for each data set, hence reducing the probability of combining data sets.
Several power functions were fitted to sample data sets using the least-
squares-regression technique and r® statistics ranging from 60 to 75 percent
were obtained with generally poor fits occurring at short and medium lives.

On the other hand, Equation (1) (the logarithmic function), when applied to
the same data sets, provided r° statistics ranging from 95 to 98 percent. As
a result, Equation (1) was selected for use in the regression optimization of

data.

7. DISCUSSION OF FATIGUE RESULTS

As noted previously, Equation (1) was fitted to the fatigue test
data (see Appendix A) using regression techniques. Each data set was analyzed
to determine the equation of the mean curve, the sample estimate of the

2

standard deviation, and the r® statistic. Fatigue-life data were plotted

along with the mean curve and the 90 percent confidence limits.
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7.1. S-N Curves

7.1.1. Aluminum Low-Load-Transfer Joints

Fatigue life curves for TaperLok fasteners in aluminum low-load-
transfer joints, Test Series 2, 4, 22, and 23, are presented in Figures B-1
through B-4 of Appendix B. These curves are plotted using the Smaxjft—ﬁ
stress parameter versus log,, cycles to failure.

Fatigue life curves for the HiTigue fastener in aluminum low-load-
transfer joints, Test Series 2, 4, 22, and 23, are presented in Figures B-5
through B-8 of Appendix B and similar curves for the mandrelized system are
presented in Figures B-9 through B-12. Note that in all cases, the standard
deviation is quite low and the r® value is always greater than 90 percent
and generally greater than 95 percent.

Because of the apparent good curve fits obtained and similarities
in curve equations, the analysis was expanded to investigate the combination
of data sets. Test Series 2 and 4 and Series 22 and 23 were combined for the
TaperLok, HiTigue, and mandrelized systems, respectively (Figures B-13 through

B-18). Again, the low standard deviations and high r®

values indicate very
good curve fits and suggest that different stress ratios can be combined on
the same curve using the SmaxJTffﬁ parameter. The latter hypothesis was
further tested by combining data for Test Series 48 (R = + 0.1) and 49 (R =
- 1.0) and Test Series 2 and 4 for the TaperLok, HiTigue, and mandrelized
systems, respectively. Again, good fitting was obtained (Figures B-19
through B-21).

Data were combined for steel fasteners (Series 2 and 4) with data
for titanium fasteners (Series 22 and 23) with extremely good results
(Figures B-22 through B-24).

At this point, it was apparent that the parameter Smaxfft—ﬁ and the
curve fitting equation were working quite well and further data pooling was
considered. Data pooled for Test Series 2 and 4 for all three fastener
systems produced a very good curve fit (Figure B-25). One data point that
fell outside of the 90 percent band at a high stress level where the assumption
of joint material elasticity may not be valid; nonetheless, 68 of the 69 data

points (98.5 percent) were contained within the 90 percent band.
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The data pooling process was continued (Figure B-26) wherein Test
Series 48 and 49 data were added to that for Test Series 2 and 4 for all
three fastener systems. Again, the standard deviation was small and the r°
value high. The additional data caused a minor shift of the mean curve and
the tolerance band; however, 89 of the 93, or 95.7 percent of the data
points, were contained within the 90 percent band.

Data for Test Series 2, 4, 48, 49, 22, and 23 for all three
fastener systems were then combined to produce one curve, Figure B-27. The
changes in the curve, when compared to the preceding two figures, were minor
with very small changes in standard deviation and r® values. Only eight of
the data points fell outside of the 90 percent band, leaving 143 points or
94.7 percent of the data within the band.

It is believed that Figure B-27 is a reasonable example of normal
fatigue data scatter and indicates that the data for the three fastener sys-
tems can be considered as one data population. Hence, the mean line and 90
percent band from Figure B-27 were used as a basis to evaluate the individual

fastener variables in the low-load-transfer joint configuration.

7.1.2. Aluminum High-Load-Transfer Joints

Data generated for the aluminum high-load-transfer joint configura-
tion at stress ratios of + 0.25 and - 0.25 are shown for the TaperLok and
HiTigue fastener systems in Figures B-28 through B-31. Good curve fitting is
seen in the standard deviation and r° values. The combining of stress ratios
for each fastener system produced good fitting parameters (Figures B-32 and
B-33).

Study of the last two curves (Figures B-32 and B-33) revealed
greater difference than had previously had been observed for similar test
series combinations. Study of joint failure modes also indicated a definite
trend to develop gross section failures near the edge of the joint lap at
low loads and fay surface failures at the hole at high loads. It appeared
that the change in failure mode was due to the ineffectiveness of the bending
restraints with such thick joints. To investigate this further, a specimen
was instrumented with strain gages and load-strain data obtained and analyzed.

The data indicated that bending was occurring. Attempts to eliminate bending
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resulted in load transfer across the restraint and as a result, it was
decided to forego any further testing on this specimen configuration. It was
obvious that the mixed failure modes did not reflect fastener effects in the
joint but, instead, reflected effects of the restraint system on the joint.

(A further discussion of these findings is presented in Appendix F.)

7.1.3. Aluminum Medium-Load-Transfer Joints

No data were generated for the medium-load-transfer joint due to
problems similar to those described for the high-load-transfer joint
configuration. In this case, the joint members were also thick enough to
generate substantial bending stresses. Efforts to reduce the bending via
restraint systems proved unsuccessful since load was once again transferred
across the restraint making determination of load applied to the specimen

impractical.

7.1.4. Titanium Low-Load-Transfer Joints

The results of Test Series 31 for a steel TaperLok in a titanium
low-load-transfer joint indicated a higher degree of scatter than is generally
obtained for aluminum joints, as noted by the standard deviation and r°
values (Figure B-34).

A similar curve for the HiTigue fastener system is not available
as fasteners one grip length shorter than necessary were mistakenly installed
in the specimens. The error was not detected until testing had started.

All failures were occurring at the outer joint surface on the nut side of the
joint where there was no fastener interference.

Although the curve fit for the mandrelized system was very good,
the shape of the curve at high stresses is somewhat unusual and unexplained
(Figure B-35),

The addition of test data from Test Series 52 (R = + 0.1) to the
data from Test 31 (R =+ 0.25) for the mandrelized system had little effect
upon the curve equation and indicated that the stress parameter was adequate

for titanium joints as well as aluminum joints (Figure B-36).
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7.2. Consideration of Variables

In order to maintain continuity, the secondary variables discussed
earlier will be examined for each fastener system separately with general

comparisons between systems presented in a later section.

7.2.1. TaperLok Secondary Variables

The maximum interference condition provided decidedly higher life
and, in fact, had one value outside of the 90 percent population band. The
effect of minimum and maximum interference levels upon fatigue life is
illustrated in Figure C-1.

A reduction in t/D ratio produced higher fatigue life for this
fastener system, especially at positive stress ratios (Figure C-2). Again,
data fell outside of the 90 percent population band.

A reduction in fastener size may have possibly provided a slight
increase in fatigue life--but not enough to exceed the 90 percent population
band (Figure C-3).

The effects of protruding-head fasteners compared to flush-head
fasteners were very small, if not nonexistent, at high t/D ratios (Figure C-4).

The effect of a titanium fastener and a reduced t/D combination
produced a slight increase in life for specimens tested at positive stress
ratios; however, the trend did not exceed the 90 percent population limits
(Figure C-5).

There appears to be a slight tendency toward increased fatigue life

for protruding head fasteners in thinner stackups (Figure C-6).

7.2.2., HiTigue Secondary Variables

The HiTigue fastener system was apparently somewhat more sensitive
to installation conditions than the TaperLok. In this case, the maximum
interference-level data remained scattered around the mean line, but the
minimum level data all fell below the line with one value outside the 90

percent population limit (Figure C-7).
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The joint fatigue life for this fastener system definitely improved
in thinner joints with 5 of the 11 (45 percent) data points falling outside
of the 90 percent population limit (Figure C-8).

Interpretation of fastener size effects was somewhat clouded by
the behavior of the 3/16-inch-diameter data. It appeared that two failure
modes controlled the joint behavior. At low stress, fatigue life of the
smaller fastener joint was definitely increased with failures occurring at
the fastener head or fay surface. At high stress, fatigue life was somewhat
reduced with failures occurring along the fastener shank. Increasing the
fastener size to %-inch diameter appeared to have no effect (Figure C-9).

Data for the HiTigue system confirmed an increase in life with
thinner joints and again primarily at positive stress ratios (Figure C-10).

Positive stress ratio data for the protruding-head fastener in thick
joints (t/D ~ 1.5) fell on both sides of the mean line with a trend for
reduced life with reduced stress when compared to the mean line. However,
all positive stress ratio data fell within the 90 percent population band.
This same trend is applicable to the negative stress ratio; however, one
point fell outside the 90 percent population band indicating a definite
positive effect (Figure C-11).

A study of the effects of protruding-head fasteners in thin joints
(t/D ~ 0.5) showed that the data for both stress ratios fell outside the 90
percent population limit indicating that protruding-head fasteners in thin
sheets did, indeed, provide life increases over the baseline thick sheet,

flush-head conditions (Figure C-12).

7.2.3. Mandrelized System Secondary Variables

The findings of the previously mentioned Boeing study, in that
fatigue life was definitely reduced with lower levels of cold work, was
supported by the data shown in Figure C-13. Unfortunately, maximum levels
of cold work could not be obtained as the mandrel pulling shank was too large
to fit into the reduced hole size required for maximum cold-work levels.

As with the other systems, fatigue life increases were indicated

due to reduced sheet thickness. In this instance, stress ratio effects were
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not as prevalent as was the case with the other two fastener systems (Figure
C-14). The test data indicated an increase in fatigue life for reduced
fastener sizes (Figure C-15).

A high degree of scatter in the fatigue data was indicated when
titanium fasteners were installed in thin joints as the positive stress ratio
data fell outside of both sides of the 90 percent population band. The
negative stress ratio data did show an effect for increased life, especially
at higher stress levels. Hence, one would conjectuce that the overall effect
of reduced sheet thickness and titanium fasteners was one of increased life
(Figure C-16), as with the other two systems.

The effects of protruding-head fasteners in thick sheets were shown
to be negligible (Figure C-17), as was the case with the other two fastener
systems.

Again, as shown for the other two fastener systems, a reduction of
sheet thickness and use of protruding-head fasteners provided a definite

increase in fatigue life (Figure C-18).

7.2.4, Titanium Joint Secondary Variables

The effect of interference level on titanium joints is shown for
the TaperLok in Figure C-19. It appears that maximum interference reduced
life at lower stresses while minimum interference showed very little effect.

The effect of reduced titanium joint thickness appears to be
negligible and the data for the reduced t/D ratio belongs in the same family
as Test Series 31 (Figure C-20).

Figures C-21 and C-22 present data for Test Series 33 and 35,
respectively, for the HiTigue as compared to the TaperLok baseline curve
(Test Series 31). It is apparent that had the Test Series 31 curve for the
HiTigue fastener been generated, it would have been substantially different
from the TaperLok curve. This is evidenced by the fact that equivalent
Figures C-19 and C-20 for the TaperLok system show data falling generally
within the 90 percent population band.

The effect of the reduced titanium joint thickness of Test Series
35 for the mandrelized system was compared to the combined baseline of Series

31 and 52. There was a definite trend in the direction of reduced life at
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lower operating stress levels (Figure C-23)., This trend was similar to, but
more extreme than, that observed for the same TaperLok test series (Figure

C-20).

7.3. Summary of Fatigue Results

As discussed earlier, the fact that S-N data for all three fastener
systems could be combined on one S-N curve indicated that there was very
little difference in the fatigue life behavior of the systems for the baseline
condition. It is very unlikely that these results would have been possible
if careful attention had not been paid to test specimen preparation. Once
again, the baseline condition was defined as a 3/8-inch diameter (D) flush-
head fastener installed at the nominal (mean) interference level in an
aluminum or titanium low-load-transfer specimen, with single sheet thickness
(t) such that the t/D ratio was approximately 1.5. Fatigue testing was
conducted at stress ratios of + 0.25, + 0.1, and - 1.0.
Analysis of the results of secondary variable tests (presented in
Appendix C) revealed the following:
® Minimum and maximum installation conditions had a
definite effect upon fatigue life for all three
fastener systems.

® Reduced joint sheet thicknesses resulted in an increase
of fatigue life of aluminum joint specimens (possibly due
to better hole preparation in this sheet) and yielded a
slight reduction in life for those titanium joints tested
at lower stress levels (possibly due to the increased data
scatter in titanium joint material).

e Joints assembled with protruding-head fasteners when com-

pared to these assembled with flush head fasteners, showed
very slight increases in fatigue life in thick joints where
the percent increase in net section arca is small and a
fairly substantial increase in fatigue life when testing
was conducted on thinner joints, where the relative increase

in net section area is larger.
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8. STATIC-JOINT TESTS

Static-joint tests were conducted using universal testing machines
and an LVDT-type extensometer. Yield loads were determined from the auto-
graphic load-deflection record by the 0.2-percent-offset method when the
failure mode and ultimate load indicated sheet material tensile failure or
by the 0.04D (where D is the nominal fastener diameter) offset method when
the fastener failed. The tables in Appendix D report critical dimensions,
yield and ultimate loads, and gross section stresses.

The magnitude of net section stresses indicated that full material
strength was developed for low-load-transfer joints. This is indeed fortunate
in that the initial test of a titanium low-load-transfer joint resulted in
severe damage to the gripping jaws and jaw adjustment mechanism, hence making
further testing impossible. However, titanium material certification data
make it possible to compute either net or gross section yield and ultimate
loads with a high degree of confidence.

Analysis of the high-load-transfer static-joint data indicated
the need to develop such data for any joints included in future programs as
net and gross section stress did not compare well with material strength
data. This was to be expected as this joint was subjected to severe bending--
static-joint failures generally consist of a combination of fastener and

joint material failure modes.

9. SHEET MATERIAL PROPERTIES

Sheet material fatigue data and S-N curves are reported in Appendix
E along with material certifications. The data are somewhat lower than that

supplied by Alcoa(lz)

; however, the Alcoa data were for smooth-machined
tensile bars and one would expect to observe some reduction in fatigue life

when testing mill-quality plate specimens.

10. RECOMMENDED PRESENTATION FORMAT

The primary concern when considering possible joint fatigue data
presentation formats is that of providing the design engineer data in the

most understandable manner. It was shown earlier that the stress parameter,
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Smaxv1l - R, provides excellent data consolidation for the life range of 3,000
to 10 million cycles. 1In addition, the use of this parameter makes it

possible to obtain fatigue life information for any number of stress ratios

from one S-N type curve. The use of the 90 percent confidence--90 percent
population bands on the S-N curve provide an immediate assessment of data
scatter,

It is recommended that the proposed MIL-HDBK-5 presentation format,
shown in Figure 8, be utilized. It provides for future addition of equivalent
fastener systems as well as an assessment of the effects of variables which
may be confirmed, if necessary, for specific applications. If this approach
is unacceptable, the necessary data may be extracted from the curve in
Figure 8 and a modified constant life diagram can be constructed as shown in
Figure 9. This format is more familiar to the design engineer, but does not

contain any indications of data scatter,

11. RECOMMENDED DATA GENERATION PROGRAM

Based upon the findings of this program, it is recommended that
fastener systems proposed for future inclusion in the joint fatigue-1life
section of MIL-HDBK-5 be subjected to an experimental program to include the
following tests:

(1) One S-N curve consisting of a minimum of 12 specimens

at each of two stress ratios (24 specimens)

(2) Two specimens at each of two load levels for minimum

and maximum installation conditions (8 specimens)

(3) Two specimens of reduced thickness at each of two load

levels and two stress ratios (8 specimens)

(4) Two specimens at each of two load levels for one larger

and one smaller fastener diameter than tested in (1)
above (8 specimens)

(5) Two static-joint-strength specimens for each joint

thickness and fastener diameter (8 specimens)

(6) Should a second fastener material be included--9 speci-

mens at each of two stress ratios in the form of an S-N

curve (18 specimens).
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LOADING AXIS

R 7 90 Population Limits ///"
90 Percent Confidence ////
é a Mean Curve f//;—
\§§¢¢7
. 7075-T7351 Low-Load (5%)
8 :
Transfer Joint
b PH13-8Mo (Fs =125 ksi) and
2 g Ti-6A1-4V° (F_ =98 ksi)
u
‘. Flush-Head Fasteners
Ii,: t = .625, D = .375
Se g Log(Nf) = 10.9039 - 0.0056S
% 8 - - 4.,01749 Log(S)
é4
= =¥,
1 L} T Al
103 0 10° 10° 10
CYCLES T8 FRILURE
EFFECTS OF JOINT VARIABLES
Fastener Systems in Above Data Population
Variable TaperLoka HiTigueb Mandrelized Holec
Min/Max Interference Max > Mean Min < Mean Min < 90% Limit
5. t/D > Mean > Mean > Mean
Protruding Head > Mean > 90% Limit > 90% Limit
3/16 Diameter > Mean > Mean > Mean

8 Manufacturer's Part Numbers: TLD100, TLV100, TLD200, TLV200-6 pins,
CPL1001 nut.

b

Manufacturer's Part Numbers: HLT35, HLT34 pins, with HL1399 collars,

HLT 11, HLT10-6 pins, HL97 collars.

€ Manufacturer's Part Numbers: ST5300 CBS sleeves, HL11, HL645, HL10,
HL644 pins, HL97 collars.

FIGURE 8. PROPOSED MIL-HDBK-5 PRESENTATION FORMAT
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The above program should be repeated for each joint material and
configuration proposed for inclusion in MIL-HDBK-5. The initial step in data
analysis would be to determine if regression curve-fitting techniques provided
a curve equation similar to that for Figure 8. If it did, the second step
would be to make a direct comparison to Figure 8 and determine if the new
curve belonged in the data family. A good fit would allow listing the fastener
in Figure 8 along with variable-effect statements. If the fit with Figure 8
was not acceptable, a new curve would have to be added to the Handbook. In
the event the Figure 9 format is selected, the constant life diagram could be

constructcd from information contained in the Figure 8 format.

12. CONCLUSIONS AND RECOMMENDATIONS

The results of this program cover a number of different areas and
provide the necessary background for the initiation of several new programs.
However, the following conclusions can be drawn from the results:

® Stress ratio effects can be collapsed making it possible

to describe several sets of fatigue test data with differ-
ing stress ratios with one curve. This makes it possible
to publish a substantial quantity of statistically
confident fatigue design data in MIL-HDBK-5 in a limited
amount of space and also provides for future inclusion of
additional data for other fastener systems.

® Fatigue design data developed for relatively thick joints

(t/D ~ 1.5) provides a somewhat conservative estimate of
the fatigue life of thinner joints.

® Fatigue design data developed with flush-head fasteners

provides a slightly conservative estimate of the fatigue

lives of joints fastened with protruding-head fasteners.
® The high- and medium-load-transfer joints made up from

thick sheets exhibit sufficient bending so as to cloud

fastener effects.
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(1)

(2)

(3

(4)

(5)

(6)

As a result of the above, it is recommended that:

e A proposal be prepared for presentation to the MIL-HDBK-5
Coordination Group recommending inclusion of fastened
joint fatigue life design data in Chapter 8 of the Hand-
book. It is also recommended that the presentation format
be similar to that of Figure 8 of this report.

e Efforts should be directed toward the development of medium-
and high-load-transfer specimens which have reduced bending
stresses in thick joints. An additional objective of this
effort would be the investigation of possible consolidation
of data for joints with differeing levels of load transfer.

e A program be initiated to consider the possible inclusion
of other fastener systems in the proposed MIL-HDBK-5 joint
fatigue design data section of Chapter 8. Systems with
differing functional mechanisms that might be candidates
would include the "King Sizing'" fastener, the Huck "EXL"

system and the Cherry '"CPL" nut, to name a few.
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APPENDIX A

JOINT FATIGUE TEST RESULTS

1. TOP SHEET AT EDGE OF HEAD

2 TOP SHEET AT COUNTERSINK AND THROUGH-HOLE JUNCTTON

w
WA

TOP SHEET ALONG THROUGH HOLE

4, FAY SURFACE AT EDGE OF HOLE

N—_
A

Sk ) K FAY SURFACE--AWAY FROM HOLE
i

6. = PLAIN SHEET ALONG THROUGH HOLE
\j/

AT PLAIN SHEET AT EDGE OF HOLE

7A. PLAIN SHEET AT OUTER EDGE OF NUT

|

8. SHEET SURFACE AWAY FROM HOLE (NET SECTION)

&
K

GROSS SECTION

N e
e

L~

L0, D.N.F. = Did Not Fail.

1. D.N.S. = Did Not Separate

FIGURE A-1. FATIGUE FAILURE MODES
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TABLE A-1. 3/8 INCH STEEL TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TDF6DA2
Fastener System: TLD100-6 Pin, TLN10O1-CPL-6 Nut
Interference Fit: 0.004 Inch Interference
Fastener Material: PH13-8Mo Pin, A-286 Nut
Stress Ratio, Spin/Smax: R =+ 0.25
Thickness to Diameter Ratio: t/D = 1.7

Max Stress
Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks

TDF6DA2-13 35 95,130 8

-12 45 21,880 7

-11 55 2,820 6

-9 25 453,290 4

-8 30 120,530 4

-7 35 49,060 4

-6 45 32,721 4

-5 20 1,480,070 4

-3 17 2,963,390 4

-2 14 8,894,490 7

-1 25 316,710 8

-14 20 4,411,600 6

(a) See failure mode description.
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TABLE A-2. 3/8 INCH STEEL TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS
(Minimum and Maximum Interference Conditions)

Specimen Designation: TDF6DA3
Fastener System: TLD100-6 pin, TLN1001-CPL-6 nut
Interference Fit: 0.003 (minimum) and 0.006 (maximum) inch
Fastener Material: PH13-8Mo pin, A-286 Nut
Stress Ratio, Spin/Smax: R = + 0.25
Thickness to Diameter Ratio: t/D = 1.7

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
TDF6DA3-1 23,1 354,260 1 Minimum Interference
-3 48.5 13,680 4 & 2
-9 48.5 26,480 4 Maximum Interference
-10 2351 377,340 4 o L
-11 2351 1,547,620 4 L L
-12 23.1 520,950 9 L i

(a) See failure mode description.
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TABLE A-3. 3/8 INCH STEEL TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TDF6DA4
Fastener System: TLD100-6 Pin, TLN1001-CPL-6 Nut
Interference Fit: 0.004 Inch Interference
Fastener Material: PHI3-8Mo Pin, A-286 Nut
Stress Ratio, Spin/Smaxt R = - 0.25
Thickness to Diameter Ratio: t/D = 1.7

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(3) Remarks
TDF6DA4-2 15 878,720 7
-3 25 106,240 1
-4 20 306,390 9
-1 35 40,000 9
-5 45 75170 4
-6 20 230,090 4
-7 35 36,030 2
-11 1L 2,493,270 4
-12 9 12,242,940 D.N.E.
-13 50 6,740 4

(a) See failure mode description.
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TABLE A-4. 3/8 INCH STEEL TAPERLOK, 7075-T73 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation:  TDF6DAS
Fastener System: TLD100-6-Pin, TLN1001-CPL-6 Nut
Interference Fit: (0,004 Inch Interference
Fastener Material: PpH13-8Mo Pin, A-286 Nut
Stress Ratio, Spin/Smax: R = + 0.25 or - 0.25
Thickness to Diameter Ratio: ¢t/D = 0.5

Max Stress
Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(3) Remarks
R =+ 0.25
TDF 6DA5 -4 48.5 33,230 1
-3 48.5 19,980 4
-12 34.6 136,340 2
-5 34.6 112,640 5
-1 23.1 1,685,200 4
-7 23,1 1,833,560 2
R =-0.25
TDF6DA5-10 37.6 30,190 1
-11 37.6 31,590 1
-9 26.8 123,366 4
-8 26.8 70,310 1
-2 17-9 554,920 4
-6 17..9 377,790 9 Grip Failure

(a) See failure mode description.
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TABLE A-5. 3/16 INCH STEEL TAPERLOK, 7075-T73 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TDF3DA6
Fastener System: TLD100-3 Pin, TLN1001-CPL-3 Nut
Interference Fit: 0.0025 Inch Interference
Fastener Material: PH13-8Mo Pin, A-286 Nut
Stress Ratio, Spin/Smax: R = + 0.25
Thickness to Diameter Ratio: t/D = 1.4

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
TDF3DA6-3 48.5 30,950 3
-7 48.5 19,030 3
-5 48.5 29,940 3
-2 231 786,640 6
-1 23,1 828,700 4
-8 23.1 397,810 9 Grip Failure

(a) See failure mode description.
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TABLE A-6.

Specimen Designation:
Fastener System:
Interference Fit:

Fastener Material:

Stress Ratio, Spin/Smax:
Thickness to Diameter Ratio:

TDF 6MA9

TLD100-6 Pin, TLD1001-CPL-6 Nut
0.004 Inch Interference
Pl13-8Mo Pin, A-286 Nut

R =+ 0,25

/D = 1,7

3/8 INCH STEEL TAPERLOK, 7075-T7351 HIGH-LOAD TRANSFER SPECIMENS

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
TDF6MA9-14 12.5 275,290 9
-13 15 275,000 4
-12 25 11,650 4
-10 20 44,840 4
-9 10 1,609,940 9
-15 Tirs, 651,290 4

(a) See failure mode description.
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TABLE A-7. 3/8 INCH STEEL TAPERLOK, 7075-T7351 HIGH-LOAD TRANSFER SPECIMENS

Specimen Designation: TDF6MALO
Fastener System: TLD100-6 Pin, TLN1001-CPL-6 Nut
Interference Fit: 0.004 Inch Interference
Fastener Material: PH13-8Mo Pin, A-286 Nut
Stress Ratio, Spipn/Smax: R = - 0.25
Thickness to Diameter Ratio: t/D = 1.7

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(3) Remarks
TDF6MA10-9 5 2:333,330 9
-8 5 1,880,510 9
-7 LoD 824,910 9
-6 25 7,160 4
-4 10 259,030 9
-3 12,5 212,250 4
-2 15 54,540 4
-1 20 35,000 9

(a) See failure mode description.

60




TABLE A-8. 3/8 INCH TITANIUM TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TVF6DA22
Fastener System: TLV100-6 Pin, TLN10OlL-6 Nut
Interference Fit: 0.004 Inch Interference
Fastener Material: 6AL-4V Pin, A-286 Nut
Stress Ratio, Spin/Smax: R = + 0.25
Thickness to Diameter Ratio: t/D = 1.7

Max Stress
Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(3) Remarks

TVF6DA22-12 15 3,441,330 4
-8 30 197,930
-9 20 1,659,490 7A
-10 20 1,454,480 7A
-2 50 9,890 3
-1 10 12,620,850 D.N.F.
-5 35 97,570 5
-3 40 63,100 6
-7 15 580,600 8
-6 25 188,220 8
-4 17..5 540,630 8
-12 15 3,441,340 4
-11 40 42,470 5

(a) See failure mode description.
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TABLE A-9. 3/8 INCH TITANIUM TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TVF6DA23
Fastener System: TLV100-6 Pin, TLN1001L-6 Nut
Interference Fit: 0.004 Inch Interference
Fastener Material: 6AL-4V Pin, A-286 Nut
Stress Ratio, Spin/Smaxt R = - 0.25
Thickness to Diameter Ratio: t/D = 1.7

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
TVF6DA23-4 20 245,552 5
-2 50 7,530 6
-1 15 397,800 4 & 7A
-7 40 25,820 2
-3 30 89,420 5
=5 25 166,270 5
-6 12.5 1,412,930 4
-9 1155 8,594,130 9 Grip Failure
-8 15 1,215,870 4

(a) See failure mode description.
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TABLE A-10. 3/8 INCH TITANIUM TAPERLOK, 7075-T73 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TVF6DA25
Fastener System: TLV100-6 Pin, TLN10OlL-6 Nut
Interference Fit: 0.004 Inch Interference
Fastener Material: 6AL-4V Pin, A-286 Nut
Stress Ratio, Spin/Smax: R = + 0.25 or - 0.25
Thickness to Diameter Ratio: t/D = 0.5

Max Stress
Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
R =+ 0.25
TVF6DA25-1 48.5 12,010 2
= 34.6 142,470 6
-7 2351 329,860 2
-8 48.5 15,280 2
-9 34.6 159,500 6
-11 2351 681,810 2
R =-0.25
TVF6DA25-3 17.9 292,890 9
=4 26.8 33,490 2
-5 37 .6 23,280 2
-6 26.8 52,910 2
-10 37.6 15,400 8
-12 1.7:5:9 351,230 2

(a) See failure mode description.
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TABLE A-11. 3/8 INCH STEEL TAPERLOK, 6AL-4V M, A, LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TDF6DT31
Fastener System: TLD100-6 Pin, TLN1OOlL-6 Nut

Interference Fit: 0.004 Inch Interference

Fastener Material: PH13-8Mo Pin, A-286 Nut
Stress Ratio, Spin/Smax: R = + 0.25
Thickness to Diameter Ratio: t/D = 1.7

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
TDF6DT31-8 58 819,230 9 Grip Failure
-9 70 122,050 D.N.S.
-2 60 293,650 6
-7 60 730,740 3&6
-10 70 85,030 74
-4 90 125380 2
-3 80 21,620 3
-6 50 3,463,770 D.N.F.
-5 60 647,000 4

(a) See failure mode description.
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TABLE A-12. 3/8 INCH STEEL TAPERLOK, 6AL-4V M.A. LOW-LOAD TRANSFER SPECIMENS

Specimen Designation:
Fastener System:
Interference Fit:
Fastener Material:

TDF6DT33
TLD100-6 Pin, TLN1OOIL- Nut

0.003 (Minimum) and 0.006 (Maximum) Inch
PH13-8Mo Pin, A-286 Nut

Stress Ratio, Spin/Smax: R =+ 0.25
Thickness to Diameter Ratio: t/D = 1.7
Max Stress
Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(3) Remarks
TDF6DT33-6 55 839,470 4 Minimum Interference
-8 55 914,090 4 A iy
-2 55 331,620 2 Maximum Interference
-4 55 391,950 6 " iy
-1 80 111,670 1 i L

(a) See failure mode description.
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TABLE A-13. 3/8 INCH TITANIUM TAPERLOK, 6AL-4V M.A, LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TVF6DT35
Fastener System: TLV100-6 Pin, TLN10OlL-6 Nut
Interference Fit: 0.004 Inch Interference
Fastener Material: 6AL-4V Pin, A-286 Nut
Stress Ratio, Spin/Smax: R = + 0.25
Thickness to Diameter Ratio: t/D = 0.6

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks

TVF6DT35-5 80 66,630 3
-1 80 58,710 6
-3 65 175,790 6
-4 65 143,390 6
-6 55 1,493,130 3

-2 55 1,836,750 D.N.F.

(a) See failure mode description.
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TABLE A-14. 3/8 INCH STEEL TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation:
Fastener System:
Interference Fit:
Fastener Material:
Stress Ratio, Spin/Smax:

TDP6DA43

TLD200-6 Protruding Head Pin, TLN1001-CPL-6 Nut
0.004 Inch Interference

PH13-8Mo Pin, A-286 Nut

R=+0.25 or - 0.25

Thickness to Diameter Ratio: t/D = 1.7
Max Stress
Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
R =+ 0.25
TDP6DA43-1 23..1 488,940 4
-3 231 235,680 4
-4 34.6 144,320 2
-5 34.6 52,590 6
-2 48.5 12,870 6
-7 48.5 18,270 6
R =-0.25
TDP6DA43-6 17 .9 421,710 7A
-11 17.9 231,750 4
-9 26.8 80,260 6
-12 26.8 96,590 4
-8 37.6 20,600 3
-10 37.6 14,760 4

(a) See failure mode description.
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TABLE A-15.

Specimen Designation: TDP6DA4S

Fastener System:
Interference Fit:
Fastener Material:

Stress Ratio, Spin/Smax: R = + 0.25 or - 0.25
Thickness to Diameter Ratio: ¢t/D = 0.5

3/8 INCH STEEL TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

TLD200-6 Protruding Head Pin, TLN100Ol-CPL-6 Nut
0.004 Inch Interference
PH13-8Mo Pin, A-286 Nut

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
R =4+ 0.25
TDP6DA45-2A 23.1 609,580 7A
-11A 2351 545,980 3
-4A 34.6 149,740 7A
-8A 34.6 120,200 7A
-12A 48.5 21,840 6
-1A 48.5 10,820 2
R =-0.25
TDP6DA45-9A 179 482,810 4 & 6
-3A 17.9 521,980 9
-5 26.8 147,220 7A
-6 26.8 111,790 6
-10A 37.6 21,870
-7A 37.6 15,750

(a) See failure mode description.
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TABLE A-16. 3/8 INCH STEEL TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TDF6DA48
Fastener System: TLD100-6 Pin, TLN1001-CPL-6 Nut
Interference Fit: 0.004 Inch Interference
Fastener Material: PH13-8Mo Pin, A-286 Nut
Stress Ratio, Spin/Smax: R = + 0.1
Thickness to Diameter Ratio: t/D = 1.7

Max Stress

Specimen Gross Area, | Cycles to Failure Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
TDF 6DA48-4A 48.5 12,670 6
-2A 48.5 19,160 4
-3A 23,1 255,010 9
~1X 23,1 314,230 9

(a) See failure mode description.
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TABLE A-17. 3/8 INCH STEEL TAPERLOK, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: TDF6DA49
Fastener System: TLD100-6 Pin, TLN1001-CPL-6 Nut
Interference Fit: 0.004 Inch Interference
Fastener Material: PH13-8Mo Pin, A-286 Nut
Stress Ratio, Spin/Smax: R = - 1.0
Thickness to Diameter Ratio: t/D = 1.7

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
TDF 6DA49-2A 16.3 265,520 1 &4
-1A 163 140,420 D.N.S.
-3 29,7 25,450 4
-4A 29.7 28,920 6

(a) See failure mode description.
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TABLE A-18. 3/8 INCH STEEL HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: SDF6DA2
Fastener System: HLT35-12 Pin, HL1399 Collar
Interference Fit: (.0045 Inch Interference
Fastener Material: PH13-8Mo Pin, Steel Collar
Stress Ratio, Spin/Smax: R = + 0.25
Thickness to Diameter Ratio: t/D = 1.7

Max Stress
Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
SDF6DA2-1 20 822,670 D.N.S.
-2 30 84,730 «N: S
-3 25 246,100 4
-4 35 59,550 «NJS.
-5 40 37,140 .N. S,
-6 25 346,280 4
-7 50 7,130 4
-8 40 29,880 D.N.S.
-9 17.5 508,260 9
-10 17.5 910,710 i1
-11 12.5 8,636,110 9 Grip Failure
-12 30 56,850 4
-13 45 7,290 4
-15 55 1,440 6

(a) See failure mode description.
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TABLE A-19. 3/8 INCH STEEL HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS,
MINIMUM AND MAXIMUM INTERFERENCE CONDITIONS

Specimen Designation:  SDF6DA3
Fastener System: HLT35-12 Pin, HL1399 Collar
Interference Fit: 0.002 (Minimum) and 0.006 (Maximum) Inch
Fastener Material: PH13-8Mo Pin, Steel Collar
Stress Ratio, Spin/Smax: R =+ 0.25
Thickness to Diameter Ratio: t/D = 1.7

Max Stress
Specimen Gross Area, | Cycles to Failure | Mode of

Identification ksi N.F. = No Failure | Failure(3) Remarks
SDF6DA3-1 36.4 26,220 4 Minimum Interference

-2 36.4 14,920 4 L B

-3 36.4 20,980 6 i u

-4 23.1 290,570 9 L L

-5 23,1 447,950 6 1 A

-6 231 207,200 6 w b
-7 36.4 35,540 4 Maximum Interference

-8 34.6 72,350 7A L u

-9 36.4 37,110 4 L W

-10 231 306,230 5 W il

-11 2341 543,960 8 Y vE

-12 23, 1 311,080 5 W o

(a) See failure mode description.
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TABLE A-20. 3/8 INCH STEEL HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: SDF 6DA4
Fastener System: HLT35-12 Pin, HL1399 Collar
Interference Fit: 0.0045 Inch Interference
Fastener Material: PH13-8Mo Pin, Steel Collar
Stress Ratio, Spin/Smax: R = - 0.25
Thickness to Diameter Ratio: t/Di = 1.7

Max Stress
Specimen Gross Area, | Cycles to Failure Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
SDF6DA4-1 30 43,460 6
-2 15 1,295,710 9 Grip Failure
-3 40 11,220 3
-4 20 169,910 9
-5 20 189,620 5
-6 35 32,430 4
-7 25 58,790 3
-8 50 3,830 6
-9 8 11,361,420 D.N.F.
-10 10 2,482,450 6
-11 15 570,180 1
-12 30 61,230 1

(a) See failure mode description.
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TABLE A-21. 3/8 INCH STEEL HITIGUE, 7075-T73 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: SDF6DAS
Fastener System: HLT35-12 Pin, HL1399 Collar
Interference Fit: (0,0045 Inch Interference
Fastener Material: PH13-8Mo Pin, Steel Collar
Stress Ratio, Spin/Smax: R = + 0.25 or - 0.25
Thickness to Diameter Ratio: t/D = 0.5

Max Stress
Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
R =+ 0.25
SDF6DA5-1 23,1 992,490 2
-2 48.5 19,320 6
-5 23,1 1,279,080 4
-8 34.6 177,840 8
-11 34,6 212,280 9
-12 48.5 19,430 2
R = - 0.25
SDF6DAS5 -4 48.5 6,220 1
-6 34.6 45,100 1
-7 37.6 23,830 5
-10 17.9 623,030 4
-13 17.9 758,950 5
-14 26.8 240,100 8

(a) See failure mode description.
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TABLE A-22. 3/16 INCH STEEL HITIGUE, 7075-T73 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: SDF3DA6
Fastener System: HLI35-6 Pin, HL1399 Collar
Interference Fit: (0,0045 Inch Interference
Fastener Material: PpH13-8Mo Pin, Steel Collar
Stress Ratio, Spin/Smax: R = + 0.25
Thickness to Diameter Ratio: t/D = 1.4

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
SDF3DA6-4 23:1 1,038,180 2
-2A 48.5 5,850 6
-1A 48.5 8,610 6
-7A 23.1 1,038,740 1
-8A 48.5 7,060 3
-6A 23.1 774,320 4

(a) See failure mode description.
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TABLE A-22A, 1/2 INCH STEEL HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: SDF8DA7
Fastener System: HLT35-16 Pin, HL1399 Collar
Interference Fit: 0.0045 Inch Interference
Fastener Material: PH13-8Mo Pin, Steel Collar
Stress Ratio, Spipn/Smax: R = +0.25
Thickness to Diameter Ratio: t/D = 1.5

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
SDF8DA7-5 23.1 375,170 1 &3
-7 23,1 312,460 3&4

(a) See failure mode description.
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TABLE A-23. 3/8 INCH STEEL HITIGUE, 7075-T7351 HIGH-LOAD TRANSFER SPECIMENS

Specimen Designation: SDF6MA9
Fastener System: HLT35-12 Pin, HL1399 Collar
Interference Fit: 0.0045 Inch Interference
Fastener Material: PH13-8Mo Pin, Steel Collar
Stress Ratio, Spin/Smax: R =+ 0.25
Thickness to Diameter Ratio: t/D = 1.7

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
SDF6MA9-14 1.5 1,647,380 9
-11 20 26,840 4
-12 20 27,450 4
-10 15 112,670 4
-13 10 310,660 4
-15 5 4,320,570 9
-9 25 6,750 4

(a) See failure mode description.
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TABLE A-24, 3/8 INCH STEEL HITIGUE, 7075-T7351 HIGH-LOAD TRANSFER SPECIMENS

Specimen Designation: SDF6MA10
Fastener System: HLT35-12 Pin, HL1399 Collar
Interference Fit: 0.0045 Inch Tolerance
Fastener Material: PH13-8Mo Pin, Steel Collar
Stress Ratio, Spin/Smax: R = - 0.25

Thickness to Diameter Ratio: t/D = 1.7
Max Stress
Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
SDF6MA10-1 75 406,050 9
-2 15 38,020 9
-3 10 158,490 4
<4 20 16,490 4
-5 12.5 82,050 4
-6 10 366,560 9
-7 5 3,340,150 9
-8 25 2,850 4
=11 5 1,395,900 9
-10 20 18,220 4

(a) See failure mode description.
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TABLE A-25. 3/8 INCH TITANIUM HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: SVF6DA22
Fastener System:  HLT11-12 Pin, HL95 Collar
Interference Fit: 0.0045 Inch Interference
Fastener Material: 6AL-4V Pin, A-286 Collar
Stress Ratio, Spin/Smax: R = + 0.25
Thickness to Diameter Ratio: t/D = 17

Max Stress
Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
SVF6DA22-1 40 274900 4
-3 25 126,180 6
-4 50 4,200 3
-5 20 1,183,820 7A
-10 30 143,680
-12 25 234,120
-9 35 105,790
-2 15 1,457,370
-8 15 1,084,370 7A
-6 12 12,551,720 D.N.F.
-7 40 21,300 4
-11 20 876,700 9 Grip Failure

(a) See failure mode description.
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TABLE A-26. 3/8 INCH TITANIUM HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: SVF6DA23
Fastener System: HLT11-12 Pin, HL97 Collar

Interference Fit: 0.0045 Inch Interference
Fastener Material: 6AL-4V Pin, A-286 Collar
Stress Ratio, Spin/Smax: R =i = 1025

Thickness to Diameter Ratio: t/D = 1.7

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
SVF6DA23-4 20 256,480 5
-6 30 66,010 5
-3 15 431,080 9 Grip Failure
-2 15 979,470 7A
-8 40 8,490 6
-7 35 17,170 6
-9 8 7,240,320 2 &4
=5 50 1,790
-1 30 33,280 4

(a) See failure mode description.
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TABLE A-27. 3/8 INCH TITANIUM HITIGUE, 7075-T73 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: SVF6DA25
Fastener Sys{em: HLT11-12 Pify, HL97 Collar

Interference Fit: 0.0045 Inch Interference
Fastener Material: 6AL-4V Pin, A-286 Collar
Streds Ratio, Snipn/Smaxt B =% 0.25 or = 0:25
Thickness to Diameter Ratio: t/D = 0.5

Max Stress
Specimen Gross Area, | Cycles to Failure Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
R=+0.25

SVF6DA25-1 34.6 127,810 5

-3 48.5 25,780 1

-4 48.5 12,220 6

-6 23,1 835,580 2

-7 2351 862,520 1

-8 34.6 120,720 1

R =-0.25

SVF6DA25-2 26.8 85,190 5
-5 179 546,810 9 Grip Failure

-9 179 669,510 4

-10 37.6 25,540 1

-11 37.6 28,670 1

-12 26.8 90,620 il

(a) See failure mode description.
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TABLE A-28. 3/8 INCH STEEL HITIGUE, 6AL-4V M.A., LOW-LOAD TRANSFER SPECIMENS

Specimen Designation:
Fastener System:
Interference Fit:
Fastener Material:

SDF6DT33

HLT35-12 Pin, HL-97 Collar

0.002 (Minimum) and 0.006 (Maximum) Inch
PH13-8Mo Pin, A-286 Collar

Stress Ratio, Spin/Smax: R = + 0.25
Thickness to Diameter Ratio: t/D = 1.7
Max Stress
Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
SDF6DT33-5 55 168,260 3 Minimum Interferencd
-8 55 213,200 3 u u
-2 55 162,570 4 Maximum Interferencd
-1 55 245,530 4 L 1

(a) See failure mode description.
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TABLE A-29. 3/8 INCH STEEL HITIGUE, 6AL-4V M.A. LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: SDF6DT35
Fastener System: HLT35-12 Pin, HL95 Collar
Interference Fit: 0.0045 Inch Interference
Fastener Material: PH13-8MO Pin, A-286 Collar
Stress Ratio, Spin/Smax: R = + 0.25
Thickness to Diameter Ratio: t/D = 0.6

Max Stress
Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
SDF6DT35-5 80 25,810 D.N.S.
-2 80 54,120 1 & 2
-1 65 77,290 2
-3 65 73,130 6
-6 55 141,990 4
-4 55 90,550 6

(a) See failure mode description.
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TABLE A-30. 3/8 INCH TITANIUM HITIGUE, 6AL-4V M.A. LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: gyrepT4]
Fastener System: H[T11-12 Pin, HL-97 Collar
Interference Fit: (,0045 Inch Interference

Fastener Material: 6AL-4V Pin, A-286 Collar
Stress Ratio, Spin/Smax: R = + 0.25
Thickness to Diameter Ratio: /D = 1.7

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
SVF6DT41-3 65 79,370 4
-6 65 72,870 4
=8 55 184,460
-4A 55 269,820 D.N.S.

(a) See failure mode description.
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TABLE A-31. 3/8 INCH STEEL HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: SDP6DA43
Fastener System: HLT 34-12 Protruding Head Pin, HL1399 Collar
Interference Fit: 0.0045 Inch Interference
Fastener Material: PH13-8Mo Pin, Steel Collar
Stress Ratio, Spipn/Smax: R =+ 0.25 or - 0.25
Thickness to Diameter Ratio: t/D =1,7

Max Stress
Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
R =+ 0.25
SDP6DA43-9 48.5 17,550 4
-7 48.5 26,380 4
-4 34.6 54,250 5
-6 34.6 72,400 1
-2 23.1 309,790 5
-5 23.1 206,870 8
R =-0.25
SDP6DA43-10 37.6 31,490 5
-1 3746 38,940 1
-11 26.8 96,440 8
-3 26.8 73,600 4
-8 17.9 364,980 8
-12 17.9 378,130 4

(a) See failure mode description.
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TABLE A-32.

3/8 INCH STEEL HITIGUE, 7075-T73 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: SDP6DA4LS
Fastener System:  }[T34-12 Protruding Head Pin, HL1399 Collar

Interference Fit: 0.0045 Inch Interference
Fastener Material: PH13-8Mo Pin, Steel Collar

Stress Ratio, Spin/Smax: R =+ 0.25 or - 0.25
Thickness to Diameter Ratio: t/D = 0.5

Max Stress
Specimen Gross Area, | Cycles to Failure Mode of
Identification ksi N.F. = No Failure | Failure(3) Remarks
R =+ 0.25
SDP6DA45-9 23,1 1,346,340 4
-7 23.1 330,560 4
-3 34.6 131,100 9
-10 34.6 106.610 2
-12 48.5 14,840 4
-5 48.5 19,590 7
R = - 0.25
SDP6DA45-11 17.9 1,064,860 7
-1 1759 645,230 5
-6 26.8 102,840 6
-4 26.8 96,680 6
-8 37.6 40,400 5
-2 37:6 3745220 3

(a) See failure mode description.
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TABLE A-33.

Specimen Designation:
Fastener System:
Interference Fit:
Fastener Material:

SDF6DA48

HLT35-12 Pin, HL1399 Collar
0.0045 Inch Interference
PH13-8Mo Pin, Steel Collar

Stress Ratio, Spin/Smax: R = + 0.1

Thickness to Diameter Ratio:

t/D = 1.7

3/8 INCH STEEL HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(2a) Remarks
SDF6DA48-2 231 158,630 6
-4 23,1 200,940 2
-3 48.5 6,800 6
-1 48.5 14,460 4

(a) See failure mode description.
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TABLE A-34. 3/8 INCH STEEL HITIGUE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: SDF6DA49
Fastener System: HLT35-12 Pin, HL1399 Collar
Interference Fit: 0.0045 Inch Interference
Fastener Material: PH13-8Mo Pin, Steel Collar
Stress Ratio, Spin/Smax: R == 1.0
Thickness to Diameter Ratio: t/D 17

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure Failure (3) Remarks
SDF6DA49-1 1653 115,130 6
-4 29.7 10,410 4
-3 16.3 217,530 4
-2 29.7 13,520 6

(a) See failure mode description.
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TABLE A-35. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: MDF 6DA2
Fastener System:  gT5300-CBS-12 Sleeve, HL645 Pin, HL97 Collar
Interference Fit:  (.018 Inch Cold Work, 0.002 Inch Pin Interference
Fastener Material: A_286 Sleeve, PH13-8Mo Pin, A-286 Collar
Stress Ratio, Spin/Smax: R = + 0.25
Thickness to Diameter Ratio: t/D = 1.7

Max Stress
Specimen Gross Area, | Cycles to Failure Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
MDF6DA2-1 35 42,250 5
-2 20 502,860 4
-3 1755 551,020 9 Grip Failure
-4 30 79,540 4
-5 12.5 10,401,850 D.N.F,
-6 12.5 1,823,010 9 Grip Failure
-7 15 1,543,720 6
-8 25 274,720 8
-9 40 35,840 3&6
=12 12.5 3,966,830 9 Grip Failure
-13 15 1,077,450 4
-14 45 7,360 3&6

(a) See failure mode description.
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TABLE A-36. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS,
MINIMUM INTERFERENCE CONDITION

Specimen Designation: MDF6DA3
Fastener System: ST5300-CBS-12 Sleeve, HL645 Pin, HL97 Collar
Interference Fit: 0.015 Inch Cold Work, 0.002 Inch Pin Interference
Fastener Material: A-286 Sleeve, PH13-8Mo Pin, A-286 Collar
Stress Ratio, Spin/Smax: R = + 0.25
Thickness to Diameter Ratio: /D = 1aT

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
MDF 6DA3-2 231 154,690 8
-7 23,1 361,020
-8 48.5 3,440 3&6
-10 23.1 297,440
-11 48.5 4,200 3&6
-4 48.5 4,660

(a) See failure mode description.
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TABLE A-37. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: MDF 6DA4
Fastener System: ST5300-CBS-12 Sleeve, HL645 Pin, HL97 Collar
Interference Fit: 0.018 Inch Cold Work, 0.002 Inch Pin Interference
Fastener Material: A-286 Sleeve, PH13-8Mo Pin, A-286 Collar
Stress Ratio, Spin/Smax: R = = 0.25
Thickness to Diameter Ratio: t/D = 1.7

Max Stress

Specimen Gross Area, | Cycles to Failure Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
MDF 6DA4-1 15 542,770 9 Grip Failure
-2 35 26,930 & 6
=4 175 249,410 3 &
-5 20 198,560 3
-6 1255 681,050 9 Grip Failure
-7 25 59,070 3&6
-8 20 128,650 8
-9 40 6,020 3 & 6
-10 10 2,698,610 9 Grip Failure
-11 30 27,480 &
=12 35 32,500 3&6

(a) See failure mode description.
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TABLE A-38. 3/8 INCH SPLIT SLEEVE, 7075-T73 LOW-LOAD TRANSFER JOINTS

Specimen Designation:
Fastener System:
Interference Fit:
Fastener Material:
Stress Ratio, Spin/Smax:

MDF 6DAS

ST5300-CBS-12 Sleeve, HL645 Pin, HL37 Collar
0.018 Inch Cold Work, 0.002 Inch Pin Interference
A-286 Sleeve, PH13-8Mo Pin, A-286 Collar

R =+ 0.25 or - 0.25

Thickness to Diameter Ratio: t/D = 0.5
Max Stress
Specimen Gross Area, | Cycles to Faillure Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
R =% 0.25
MDF6DA5-9 48.5 25,076 6
-1 48.5 14,920 6
-11 34.6 159,830 5
-13 34.6 145,620 8
-2 23.1 503,340 3
-3 23.:1 821,710 3
R =-0.25
MDF 6DA5-5 37.6 39,580 5
-8 37.6 31,540 6
-12 26.8 67,060 8
-7 26.8 87,160 6
-4 17.9 657,580 4
-6 1.749 781,850 4

(a) See failure mode description.
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TABLE A-39. 3/16 INCH SPLIT SLEEVE, 7075-T73 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: MDF3DA6
Fastener System: ST5300-CBS-6 Sleeve, HL645 Pin, HL97 Collar
Interference Fit: 0.012 Inch Cold Work, 0.002 Inch Pin Interference
Fastener Material: A-286 Sleeve, PH13-8Mo Pin, A-286 Nut
Stress Ratlo, Spin/Smax: R = + 0.25
Thickness to Diameter Ratio: t/D = 1.4

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
MDF3DA6-5 2353 1,796,750 2
-4 23.1 675,900 9 Grip Failure
-7 2351 675,050 9 Grip Failure
-6 48.5 10,350 3&6
-8 48.5 10,870 6
-1 48.5 13,330 3&6

(a) See failure mode description.
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TABLE A-40. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: MyF6DA22
Fastener System: ST5300-CBS-12 Sleeve, HL11 Pin, HL97 Collar
Interference Fit: (0,018 Inch Cold Work, 0.002 Inch Pin Interference
Fastener Material: A-286 Sleeve, 6AL-4V Pin, A-286 Collar
Stress Ratio, Spin/Smax: R = + 0.25
Thickness to Diameter Ratio: /D = 1.7

Max Stress
Specimen Gross Area, | Cycles to Failure Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
MVF6DA22-1 40 20,910 3&6
-2 50 3,560 3
-3 25 491,550 3
-4 35 53,260 3&6
-5 20 396,730 9 Grip Failure
-6 30 139,110 6
-7 20 922,220 6
-8 15 1,070,080 9 Grip Failure
-9 30 84,550 6
-10 20 924,740 6
=11 40 18,380 3&6
-12 15 2,100,970 4

(a) See failure mode description.
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TABLE A-41. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: MVF6DA23

Fastener System:  $T5300-CBC-12 Sleeve, HL1l Pin, HL97 Collar
Interference Fit: 0.018 Inch Cold Work, 0.002 Inch Pin Interference

Fastener Material: A-286 Sleeve, 6AL-4V Pin, A-286 Collar
Stress Ratio, Spin/Smax: RS = 0:25

Thickness to Diameter Ratio: t/D = 1.7

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
MVF6DA23-4 30 34,210 5
-1 40 19,530 3&6
-9 50 780 3&6
-2 20 208,680 5
-5 35 30,190 5
-3 25 112,990 8
-6 15 499,780 4

(a) See failure mode description.
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TABLE A-42, 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation:
Fastener System:
Interference Fit:
Fastener Material:
Stress Ratio, Spin/Smax:

MVF6DA25

ST5300-CBC-12 Sleeve, HL1l Pin, HL97 Collar

0.018 Inch Cold Work, 0.002 Inch Pin Interference
A-286 Sleeve, 6AL-4V Pin, A-286 Collar

R =+ 0.25 or - 0.25

Thickness to Diameter Ratio: t/D = 0.5
Max Stress
Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
R = +0.25
MVF6DA25-1 231 1,357,000 4
-3 23,1 156,190 3
-12 34.6 115,880 6
-6 34.6 97,280 1
-7 48.5 25750 1
-4 48.5 14,290 6
R =-0.25
MVF6DA25-11 1759 328,130 6
-8 1.7..9 495,920 6
-9 26.8 136,250 1 &2
-2 26.8 110,190 4
-5 37.6 39,020 5
-10 37.6 45,990 5

(a) See failure mode description.
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TABLE A-43. 3/8 INCH SPLIT SLEEVE, 6AL-4V M.A, LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: MDF6DT31
Fastener System: ST5300-CBC-12 Sleeve, HL645 Pin, HL97 Collar
Interference Fit: 0.018 Inch Cold Work, 0.012 Inch Pin Interference
Fastener Material: A-286 Sleeve, PH13-8Mo Pin, A-286 Collar
Stress Ratio, Spin/Smax: R =+ 0.25
Thickness to Diameter Ratio: t/D = 1.7

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(3) Remarks
MDF6DT31-10 45 3, 7765530 3
-7 50 500,750 6
-6 60 101,830 6
-5 80 20,920 6
-3 55 259,210 6
-4 80 23,000 6
-2 60 94,120 4
-1 70 40,780 6

(a) See failure mode description.
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TABLE A-44, 3/8 INCH SPLIT SLEEVE, 6AL-4V M.A. LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: MyFeDT3S
Fastener System: $T5300-CBC-12 Sleeve, HL1l Pin, HL97 Collar
Interference Fit: ( 018 Inch Cold Work, 0.002 Inch Pin Interference

Fastener Material: A.286 Sleeve, 6AL-4V Pin, A-286 Collar
Stress Ratio, Spin/Smax: R = + 0.25

Thickness to Diameter Ratio: t/p = 0.6

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
MVF6DT35-1 80 22,880 31 & 7
-3 80 30,300 6
=4 65 40,420 6
-5 65 54,290 6
-6 55 183,580 3
-2 55 122,520 2

(a) See failure mode description.
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TABLE A-45,

Specimen Designation:
Fastener System:

Interference Fit:

Fastener Material:
Stress Ratio, Smin/Smax:

3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

MDP 6DA43

STﬁ%g?'gggiig Sleeve, HL644 Protruding Head Pin

0.018 Cold Work, 0.002 Inch Pin Interference
A-286 Sleeve, PH13-8Mo Pin, A-286 Collar

’

Thickness to Diameter Ratio: 5/; : ?:;5 G & et
Max Stress
Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
R =+ 0.25
MDP6DA43-5 2351 277,130 9
-3 23.1 845,470 9 Grip Failure
-7 34.6 97,970 4
-2 48.5 11,320 6
-10 48.5 9,080 6
R = -0.25
MDP 6DA43-8 17.9 306,470 6 & 8
-6 17.9 310,900 6 & 8
-4 26.8 119,660 6
-9 37.6 26,110
-1 37.6 16,820 4

(a) See failure mode description.
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TABLE A-46.

3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: MDP6DA4S
Fastener System: ST5300-CBC-12 Sleeve, HL644 Pin, HL97 Collar

Interference Fit: 0.018 Inch Cold Work, 0.002 Inch Pin Interference

Fastener Material: A-286 Sleeve, PH13-8Mo Pin, A-286 Collar
Stress Ratio, Spin/Smax: R =+ 0.25 or - 0.25
Thickness to Diameter Ratio: t/D = 0.5

Max Stress
Specimen Gross Area, | Cycles to Failure Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
R =+ 0.25
MDP6DA4S5-1 23..1 445,730 3
-2 2341 3,197,050 3
-7 34,6 88,770 8
-3 34.6 168,530 6
-5 48.5 5,240 4
-4 48.5 20,380 6
R =-0.25
MDP6DA45-8 17:.9 1,349,260 5
-6 179 715,050 9 Grip Failure
-10 26.8 141,880 3
-11 26.8 129,060 3
-9 37.6 39,780 8
-12 37.6 47,880 i

(a) See failure mode description.
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TABLE A-47. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: MDF 6DA48
Fastener System: ST5300-CBC-12 Sleeve, HL645 Pin, HL97 Collar
Interference Fit: 0.018 Inch Cold Work, 0.002 Inch Pin Interference
Fastener Material: A-286 Sleeve, PH13-8Mo Pin, A-286 Collar
Stress Ratio, Spin/Smax: R =+ .1
Thickness to Diameter Ratio: t/D = 1.7

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
MDF 6DA48-2 48.5 7,330 6
-4 48.5 5,180 3&6
-3 23,1 162,020 5
-1 23.1 389,020 6 & 8

(a) See failure mode description.
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TABLE A-48. 3/8 INCH SPLIT SLEEVE, 7075-T7351 LOW-LOAD TRANSFER SPECIMENS

Specimen Designation: MDF6DA49
Fastener System: ST5300-CBC-12 Sleeve, HL645 Pin, HL97 Collar
Interference Fit: 0.018 Inch Cold Work, 0.002 Inch Pin Interference
Fastener Material: A-286 Sleeve, PH13-8Mo Pin, A-286 Collar
Stress Ratio, Spin/Smax: R = - 1.0
Thickness to Diameter Ratio: t/D = 1.7

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
MDF 6DA49-2 16.3 265,520 2 &8
-1 16..3 140,420 6 & 8
-3 29.7 25,450 8
-4 29.7 28,920 5

(a) See failure mode description.
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TABLE A-49. 3/8 INCH SPLIT SLEEVE, 6AL-4V M.A. LOW-LOAD TRANSFER SPECIMENS

MDF6DTS52
ST5300-CBC-12 Sleeve, HL645 Pin, HL97 Collar

0.018 Inch Cold Work, 0.002 Inch Pin Interference
A-286 Sleeve, PH13-8Mo Pin, A-286 Collar

Specimen Designation:
Fastener System:
Interference Fit:
Fastener Material:

Stress Ratio, Spin/Smax: R = + 0.1

Thickness to Diameter Ratio:

t/D = 1.7

Max Stress

Specimen Gross Area, | Cycles to Failure | Mode of
Identification ksi N.F. = No Failure | Failure(a) Remarks
MDF6DT52-3 55 92,940 7
-2 55 129,800 4 & 7
-4 80 22,020 3&6

(a) See failure mode description.
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APPENDIX B

FATIGUE LIFE CURVES FOR PRIMARY VARTABLES
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APPENDIX C

FATIGUE LIFE CURVES FOR SECONDARY VARIABLES

Mean life and 90 percent population limits for Figures C-1
through C-18 are defined by Figure B-27 where:

Log(Ng) = 10.9039 - 0.0056S - 4.01749 Log(S).

Mean life and 90 percent population limits for Figures C-19
through C-22 are defined by Figure B-34 where:

Log(Ng) = 22.373 - 0.01448 - 9.2719 Log(§).

Mean life and 90 percent population limits for Figure C-23
is defined by Figure B-36 where:

Log(Ng) = 48.3858 + 0.18428 - 30.8550 Log(S).
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APPENDIX D
STATIC-JOINT STRENGTH RESULTS
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APPENDIX E

SHEET MATERIAL PROPERTIES

TABLE E-1. SHEET MATERIAL FATIGUE PROPERTIES, NO-HOLE
SPECIMENS, 7075-T73, T7351 ALUMINUM (R = 0)

Max. Stress
Specimen Gross Area,
Identification ksi Cycles to Failure Remarks

t = 0.250 Inch

NOSAS54-1 40.0 137,000
-3 50.0 26,800
=4 45.0 69,900
-5 30.0 5,344,700
-6 35.0 230,300 Grip failure
-7 35.0 268,300 L i
t = 0.190 Inch
NOSA55-6 40.0 82,100
=5 37 a3 102,300
-3 35.0 208,000
-8 32:5 339,600
-1 32,5 152,000
-9 27 .5 5,000,000 Did not fail
t = 0.675 Inch
NOSA56-3 37.5 73,180
-7 35.0 100,300
-4 35.0 56,950 Grip failure
-2 32.5 104,290
-5 30.0 114,710
-6 30.0 117,240
-1 215 3,828,030 Grip failure
-8 25.0 5,464,750
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TABLE E-2, SHEET MATERIAL FATIGUE PROPERTIES, OPEN-HOLE
SPECIMENS, 7075-T73, T7351 ALUMINUM (R = 0)

Max. Stress
Specimen Gross Area,
Identification ksi Cycles to Failure Remarks

t = 0.250 Inch

N3SA54-11 33.33 12,300
-12 29.16 22,300
-3 25.00 37,000
-9 25.00 69,200
-1 20.82 56,000
-7 20.82 185,700
-6 16.67 116,500

t = 0.190 Inch

N6SA55-1 33.33 10,400
-2 25.00 27,000
-3 16.67 87,700
-4 33.33 10,500
-5 20.83 68,800
-6 15.83 516,100
-7 16.67 5,188,700 Did not fail
-8 25.00 24,700
-9 20.83 39,200
-10 18.75 56,400
-11 16.67 72,500

£ = 0.625 Tnch

N6SA56-1 25.00 26,320
-5 16.64 2,270,890
-9 16.67 1,302,900
-7 16.83 55;579;110 Did not fail
-8 14,58 1,319,650
-11 16.66 149,470
-3 18.74 97,350
=4 20.80 74,370
-2 24.80 34,320
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TABLE E-3,

SHEET MATERIAL FATIGUE PROPERTIES, OPEN-HOLE

SPECIMENS, 6AL-4V, MILL ANNEALED (R 0)
Max. Stress
Specimen Gross Area,
Identification ksi Cycles to Failure Remarks
t = 0.250 Inch
N6ST57-8 25.00 294,880
-3 20.84 1,181,220
-1 33.34 93,110
-5 29.18 280,000
-7 20.84 5,497,070 Did not fail
-2 25.00 310,300
-6 37.50 47,740
-10 22,92 5,392,110 Did not fail
-9 29.18 141,880
t = 0.625 Inch
N6ST58-1 58.33 225530
-2 41.68 78,400
-9 33.32 134,250
-10 33,35 467,270
-6 29.17 292,860
-4 29.16 306,170
-8 25.01 340,710
-3 24.99 517,600
-7 17.62 6,481,810 Did not fail
-12 20.84 5,596,030 Did not fail
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MATERIAL CERTIFICATIONS

e Pleasom. o, Lan v, Page _| of _, _Pages
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MM 613 D Mechanical Merallurgy Scction Aoy & Thepsr Sy 29
Type of Test =L s~ T Mo s Machine__+ ¢ « 7 Product Form EFI IO @
Spec. Dwg LY Scale 2 i Range Lot No. 3=
Strain Rate 10 1% Strain___.cc o "] “[Min || Ext ter (. 2g-g No. Other Info.
Sivain Rate After 1% Strain “L*mn. || Strain Scale: 1"= .0 ¢ % e ic W.0. No,_b3 7 ([ Project NoQ 39 € 3
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load Rate to Fracture P51/ Min. || Gears: Out Hi Orig. Branch =
o e« O
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Soak Time, Temp. 172, Chart Offset for Yield Strength (Inches) . -<=" } | T.R. No._/ 750 Date < ¢ 1 (3
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Test Grain Original Original Ultimate Ultimate Yield Yield Elongation | Red. of
Specimen Temp. Direc- Dimensions I Area Strength Strength Strength Strength in___Inches | Area
No. °F tion Inches Sq. In. Lbs. PSI Lbs. PS| In. % %o
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TEST REPORT

RMI
[ITANIUM

RMI Compcmy = NILES. OHIO

DATE

__June 12, 1973

PaGrE (=]
MILL UHDER NO GHRADE PACKING LIST NO
17430X 6A1-4V 76874

CUSTOMER NAME

Battelle Memorial Institute

CUSTOMER ORDER NO.

MATERIAL

__H.R, Annealed & Cleaned Ti Sheet

SPECIFICATION

M11-T-9046F Type 3 Comp C Cond. A (.15 max, 02) . |

IDENTIFICATION & Rrren | INGOT NO | LoT | s-R l INGOT NO | LOT | s-R INGOT NO | Ler | s-R INGOT NO | Lot | s-r
MATERIAL NUMOER | 600134 103 100 | | | | | | [
TRAVEL CARD NO | 53328 ‘ !
CHEMISTRY X INGOT (AVERAGE OF TGP-CENTER-BOTTCM! i"| FINAL PRODUCT
(~ % 202
N 012
e 17
Al 6.3
v 3.9
cr
sn
Mn
Mo
0 +136
o
FINA
P::)DLUCY alli sl 68
PROPERTIES
C] 144.5/146.6 | '
ULTIMATE KSI % 144,3/145.9 ! |
YIELD KsSt (L 138,2/140,5 | !
02% orrser’v | 137,0/139.9 .
% ELONGATION P._ f12.0 L
(INCHES) Ir 11,0/12.0 L !
% REDUCTION e | |
IN AREA B i :
BEND 105° | 5.0 TR -
E 5.0 TR |
HARDNESS

STATIC NOTCH

IMPACT

ULTRASONIC

BETA TRANSUS

TEST FORGE

Prod Ana 145Q0°F

S min, A.C

PROCEDURE

OTHER DATA

SHIPPED
NO. OF PIECES 2
WEIGHT 94 0
SIZE

125 x 30 x 71

TEST PIECES

FORM NO. 44 REV. 5/71

THIS IS TO CERTIFY THAT THE ABOVE TEST RESULTS ARE COR-
RECT AS CONTAJNED IN THE RECORDS OF THE COMPANY.

i, /4%_7{{4//%,4_
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TEST REPORT

Pace ] or.l..
DATE MiILL OHUER NO GRALE PACKING LIST NO
August 13, 1973 17433 6A1-4V 78444
CUSTOMER NAME CUSTOMER ORDER NO.
ANIUM ‘Battelle Memorial Inst, G 7650
- %‘2’ MATERIAL
a2 H.R, Ann & Cld Ti Plate
RMI Company = NILES. OHIO SPECIFICATION
M11-T-9046F Type 3 Comp C Cond A
IDENTIFICATION A Rerkm | INGOT NO Lot | s.» INGOT NO | LOT | $-R (LGOT NO | Lot | s.R INGOT NO | Lot | s-R
MATERIAL NUMBER | 890777 03 |00 | | i I | |
TRAVEL CARD NO | 32818 |
CHEMISTRY x. INGOT (AVERACE CF TOP.CENTER-BOTTOM - FINAL PRODUCT
e % .01
N 2017
L .18
Al 6.5
v 3.9
cr
sn
Mn
Mo
0 2130
o
::INOAoLucr L 18
PROPERTIES 1 Pl EY
[~ 145.6 |_139.8 | 1421 '
ULTIMATE KSI 'T | 187 & | _152.8 " 188 9 |
YiELD KsI F‘ 132,1 | _127.7 L1321 w
(0.2%) orrser|T 150,9 130.2 ! 151.% !
% ELONGATION | L | 10,0 11.0 | 10.0 !
awewess [T 7150 10 0 l
% REDUCTION L | | JIE
IN AREA [r ] | |
BEND 1089 [ |
[T [
HARDNESS
STATIC NOTCH
IMPACT
ULTRASONIC
BETA TRANSUS
TEST FORGE
PROCEDURE
Prod Anneal 1450"?‘i 15 min, A.C.
OTHER DATA
SHIPPED
NO. OF PIECES ] 3
WEIGHT [ 379 4
s1zc 190 x 36 x 96
TEST PIECES

FORM NO. 44 REV. 5,71
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THIS IS TO CERTIFY THAT THE ABOVE TEST RESULTS APE COR-

RECT AS CONTA

O IN THE RECORODS

F THE COMPANX
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ANIUM

RMI Company - wies. oHio

TEST REPORT pace 1 or 1
DATR MILL ORDER NO GHADE FACKING LIST NO
__August 13, 1973 17431 6A1=-4V 78444

CUSTOMER NAME

Battelle Memorial Inst,

CUSTOMER OHDER NO.

G_7650

MATERIAL

H.R, Ann & C1d Ti Plate

SPECIFICATION

M11-T-9046F Type 3 Comp C Cond, A

IDENTIFICATION & RiFER INGOT NO ] LOT | S-R INGOT NO. | Lot | s.m 1NLOT NO | LoT | INGOT NO {Lcr| sS-r
MATERIAL NUMBER 890777 | 04 DO | | | l ! |
TRAVEL CARD NO 32811 !

CHEMISTRY X INGOT (AVERAGE OF TCP.CENTER.-AOTTOM) 7 FINAL PRODUCT
c % 0L
N 017
Fe 18
al 6.5
v 3.9
cr
[ L
Mn
Mo
o] 130
o
Pooucr | "0 | 1 116 2 10§
PROPERTIES 1 9
1441 | 144,3 |
ULTIMATE KS! [+ 1584 1 | 1854,4 |
viELD Ksi c| 134,2 133,6 |
(0.2%) OFFSET(T | 147.5 146,7 [
% ELONGATION L 11.0 10,0 1
(INCHES) T 12.0 12.0 |
% REDUCTION | L |
IN AREA v T
BEND 108° |
[T
HARDNESS
STATIC NOTCH
IMPACT
ULTRASONIC
BETA TRANSUS
TEST FORGE
PROCEDURE
Prod Anneal 1450°F 15 min, A.C. |

OTHER DATA

SHIPPED
NO. OF PIECES o |
WEIGHT 236,21 [
LI .25Q x 36 x 72

TEST PIECES

FORM NO. 44 REV. 5,7)

THIS IS TO CERTIFY THAT THE ABOVE TEST RESULTS ARE COR-

RECT
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D IN THE RECORDS OF THE COMPANY,
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TEST REPORT

paar 1 norl
DATE MILL OHULKR NO GHADR FPACKING LiBI NO
August 8, 1973 17434 6A1=4V 78527
R Ml CUSTOMER NAME CUSTOMER ORDER NO
'ITANIUM Battelle Mcmorial Institute G 7650
MATERIAL
H.R, Anncaled & Cleaned Ti Plate
RMI Company = NILES, OHIO SPECIFICATION
Mi1-T-9046F Tvne 3 Comn C Cond A
IoenTiFICATION & Reren | INGOT NO | Lot | s-R | INGCT NO. | LOT | s-R INGOT NO | LOT | s-R | INGOT NO | LOT | 8-R
MATERIAL NUMBER | 890777 | 06 00] P = [
TRAVEL CARD NO | 32817 ! !
CHEMISTRY x INGOT 'AVERAGE CF TOP.CENTER NOTTOM -l FINAL PROOUCT
c % .01
N .017
e +18
A' 6‘5
o 3.9
cr
sn
Mn
Mo
0 .130
o
:Iu"o:;uc*r H 1pem) 60
PROPERTIES b 2 3 4
[t | 141.1 141.5 |
uLTIMATE kst (T | 146.1 146.5 i 147.4 | 146.7
YIELD KsI L] 128.2 128.6 | ]
(0.2%) OFFSET|T | 133.6 ! 135.1 | 137.0 ‘- 135,0
% ELONGATION L 13.0 | 13.0 | |
(INCHES) T 13.0 | 13.0 [ 15.0 ‘ 15.0
% REDUCTION L |
IN AREA i !
BEND 1030 L {
T |
HARDNESS
STATIC NOTCH
IMPACT
ULTRASONIC
BETA TRANSUS
TEST FORGE
PROCEDURE
Production Annealed 1450°F 15 minutes| Air Cool.
5 I
OTHER DATA
SHIPPED
NO. OF PIECES i 2
WEIGHT | 2533.0#
siZE .625 X 36 X 96
TEST PIECES

FORM NO. 44 REV. 5/71

THIS IS TO CERTIFY THAT THE ABOVE TUST RESULTS ARE COR-

RECT AS CONTA

181

D IN THE RECORDS

F THE COMPANY.
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APPENDIX F

ANALYSIS OF THE HIGH-LOAD-TRANSFER JOINT

Proposed MIL-STD-1312 Test 21 (Shear Joint Fatigue-Constant Ampli=-
tude) requires the use of bending restraints on high-load-transfer joints.
The proposed test suggests two types of restraints--the flexure pivot/90-
degree-offset and the sandwich type. The purpose of these restraints is to
minimize the bending stresses from the joint and, hence, produce consistent
joint failures originating near the fasteners.

Urzi* has shown that relatively thin (t/D ~ 0.5) unrestrained
joints may be subjected to combined bending and tensile stresses at the fay
surface as much as 2,64 times greater than the nominal (P/A) tensile stress.
He has also shown that the addition of restraints in the fastened area can
reduce the maximum stress to as little as 1.18 times the nominal stress.

It was the intent of this phase of the program to conduct high-load-
transfer joint tests in a three-post 50-kip-capacity fatigue-test system.
The majority of these joints were to be relatively thick (t/D ~ 1.5). It
was believed that the sandwich-type restraint would be most practical because
of the geometry of the system, When load was applied to the first specimen,
it became apparent that although bending might have been reduced in the joint
area, bending loads had been transferred to the load train. This observation
was manifest in the form of extreme deflections (+ 0.010 inch) of the hydraulic
actuator when measured at the actuator-test frame platen location. Experience
has shown that deflections at that location exceeding + 0.003 inch will
severely reduce actuator seal life., As a result, it was decided to attempt
to stabilize the sandwich=-type restraint by providing lateral support in
the form of rollers (see Figure F-1), It was envisioned that the rollers
could be adjusted laterally to reduce joint deflections while providing
negligible friction loading.

Test Series 9 and 10 were conducted for the TaperLok and HiTigue

fastener systems and although considerable time was expended adjusting the

* Urzi, R. B., '""Standardization of Fatigue Tests of Installed Fastener
Systems'", Lockheed-California Company Report LR25280, Naval Air
Development Center Contract N62269-71-C-0450 (July, 1972).
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/Mid—thickness gage (both ends of lap)

N Spacer

1

/ Specimen
B R /
2 : g /

i — = ]

== Na=d
AN

W 9’2\ /@ o Restraint

Additional bending restraint, both sides

Ry .
p—

/Foy surface gage (both ends of lap)

FIGURE F-1. BENDING RESTRAINT SYSTEM AND STRAIN GAGE LOCATIONS
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rollers for each specimen, actuator deflections were reduced to a level no
greater than + 0,0015 inch during cyclic loading. When Test Series 9 and 10
were completed and the data analyzed, a definite trend was observed. It was
apparent that specimens subjected to high cyclic loads tended to fail at the
fay surface at or near the fastener holes while low cyclic loads generally
produced failures in the gross section near the edge of the lap. Considerable
concern was expressed that these differing failure modes would cloud the
analysis of fastener effects upon joint life and it was suspected that the
restraint system was not adequately removing bending stresses.

A small experimental program was devised whereby electric strain
gage versus applied load data could be obtained to evaluate the effectiveness
of the restraint system, Strain gages with measuring elements 1/16 inch in
length were applied to a high-load-transfer specimen as shown in Figure F-1,
Applied load and measured strain data were obtained at loading increments up
to 20 kips for the three test conditions of no restraint, sandwich restraint,
and sandwich and roller restraint. The data for similar gage locations was
averaged and is presented in regression curve-fitted form in Figure F-2,.

The analysis of Figure F-2 is discussed in the following paragraphs.

No Restraint

These data are very encouraging in that a linear relationship
exists between the midthickness (tension only) gages and the fay surface
(tension and bending) gages. In addition, the latter data show that the
strains due to combined tension and bending are 2.58 times greater than those
for tension only which compares well with the 2.64 relationship found by Urzi

for similar conditions.

Sandwich Restraint

Data obtained with the sandwich restraint installed on the specimen
provides some interesting observations. First, the strains at the fay surface
are noted to be linear but greater in magnitude (approximately 6 percent)
than the unrestrained case. Although part of the difference may be attributed

to normal experimental errors, it is believed that the majority of the increase
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FIGURE F-2, STRAIN GAGE RESULTS FOR HIGH-LOAD-TRANSFER JOINT
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is attributable to the fact that the fay surface strain gages were placed in
a small open area between the spacer plate and the joint end. It is possible
that high lateral compressive loads could be applied to the joint surface
near the gages (by the restraint) through the spacer. As a result, additional
positive Poisson strains would be reflected in the load-strain data.

The second area of interest lies in the analysis of data taken at
midthickness., It is apparent that strain data obtained at loads up to 10
kips are not linear. This indicates that some load is being transferred
through the sandwich restraint instead of through the joint. In fact, the
similarity in slope of the no-restraint and sandwich-restraint curves at
high loads supports such a hypothesis. 1If the higher load portion of the
curve is used to project a linearized curve, it is found that the projection
intersects the fay-surface curve at a total strain magnitude nearly equivalent
to that of the no-restraint curve when both are evaluated at the same load
(say 20 kips).

Sandwich and Roller Restraint

As noted earlier, the rollers were added to reduce lateral motion
of the joint and hydraulic actuator. This was accomplished by making lateral
adjustments of the rollers at various load levels until the maximum lateral
movement at all loads was less than + 0.002 inch., The final curves presented
in Figure F-2 indicate the effect of the rollers on the strain state of the
high-load-transfer joint.

It is apparent from the fay=-surface curve that the adjustment of
the rollers for minimum deflection imposes a bending moment or preload upon
the joint at zero load. Bending in the joint has been substantially reduced
as the strain excursion for the fay-surface curve is approximately 1500 pe
for the 20 kip load range as compared to approximately 1100 pe for the un-
restrained midthickness curve for the same range. However, the reduction in
bending is completely overshadowed by the nonlinearity of the midthickness
curve for this condition and the apparent bypass of approximately 30 percent
of the applied load through the restraint system. This latter fact is

evidenced by the approximate 750 pe excursion of the sandwich and roller
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restraint curve for a 20 kip load application as compared to an approximate

1100 pe excursion for the no-restraint curve for the same load application.

Conclusions and Recommendations

As a result of the above analysis, it was determined that the
restraint systems proposed for use in MIL-STD-1312, Test 21, will not
adequately control bending in thick-joint specimens. Apparently, if bending
is reduced measurably via a restraint system, considerable load is bypassed
around the fastened area by the restraints. In addition, it is apparent
that even the sandwich-type restraint bypasses some load around the joint,
even at relatively low loads, Hence, two additional unknowns must enter the
fatigue analysis of the single-lap high-load-transfer joint--the amount of
bending in the joint and the amount of load transferred through the restraint
system--both functions of applied load. Both of these variables make it
nearly impossible to access the effect of a given fastener system on the
present high-load-transfer joint geometry. As a result, it is recommended
that consideration be given to the development of a new high-load-transfer
joint geometry which is either sufficiently symmetrical or adequately restrain-
able such that fastener effects on joint fatigue life can be assessed

independent of joint thickness.
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